import hvplot.pandas
import hvplot.xarray
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import panel as pn
import pyspedas
import pytplot
import xarray as xr
from loguru import logger
from matplotlib.patches import Circle
from pytplot import get_data, options, tplot, tplot_copy
# import proplot as pplt # not compatible with pytplot
="stretch_width")
pn.extension(sizing_mode
from utils import *
- Figure 1: two examples of discontinuity observations in ARTEMIS data (gse magnetic field, solar wind speed in gse, lmn magnetic field, ion omnidirection spectrum) with hodographs and fitting \(B_m\) (\(B_l\))
- Figure 2: distribution of \(\kappa_m\), thickness \(L\), \(d_i\), distributions of energies estimated from L=equation
For theoretical self-consistent model, the magnetic field is given by Bl=B0tanh(z/L) And we define the thickness tanh(1)=0.76 z=L, Bl=0.46B0
Using the solar wind velocity projected onto the normal direction to the SWD surface, that of the minimum variance, \(n\), we transform time to space \(r_n\)
Averaged ion velocity in mn direction (more reliable than n direction)
$v_{mn} = | - ( ) | = |v_m + v_n | = $
def calculate_RD_parameter(Bl, Bm, Bn=None, num_avg_points=8):
"""Calculate magnetic field parameters for rotation discontinuity (RD) identification.
Args:
Bl (xarray.DataArray): 'Bl' component of the magnetic field.
Bm (xarray.DataArray): 'Bm' component of the magnetic field.
Bn (xarray.DataArray, optional): 'Bn' component of the magnetic field. Defaults to None.
num_avg_points (int): Number of points at the start and end of data for averaging.
Returns:
tuple: A tuple containing 'Bl_max' and 'Bm0', and 'Bn0' if 'Bn' was provided.
"""
= np.sqrt(Bl**2 + Bm**2).mean(dim="time")
radius
# Calculate 'Bm0'
= Bm[:num_avg_points].mean(dim="time")
Bm_start = Bm[-num_avg_points:].mean(dim="time")
Bm_end = (Bm_start + Bm_end) / 2
Bm0
# Calculate 'Bl_max': average of the absolute values of 'Bl' at the start and end of the data
# Bl_start = Bl[:num_avg_points].mean(dim="time")
# Bl_end = Bl[-num_avg_points:].mean(dim="time")
# Bl_max = (np.abs(Bl_start) + np.abs(Bl_end)) / 2
# Calculate 'Bl_max': using radius, more reliable
= np.sqrt(radius**2 - Bm0**2)
Bl_max
# Calculate 'Bn0' if 'Bn' is provided, else return 'Bl_max' and 'Bm0' only
if Bn is not None:
= Bn.mean(dim="time")
Bn0 return Bl_max.values, Bm0.values, Bn0.values
return Bl_max.values, Bm0.values
def hodographs(B1, B2):
"""Hodograms of the magnetic field components.
Args:
B1 (xr.DataArray): Magnetic field component 1.
B2 (xr.DataArray): Magnetic field component 2.
"""
= np.sqrt(B1**2 + B2**2).mean(dim="time")
radius
= plt.subplots()
fig, ax = ax.plot(B1, B2, label="Observation")
(line,)
# Add a circle
= Circle(
circle 0, 0),
(
radius,="red",
edgecolor="--",
linestyle="none",
facecolor=r"$B_m^2+B_l^2=B_{l,max}^2+B_{m,0}^2$",
label
)
= ax.add_artist(circle)
circle
f"{B1.attrs['long_name']} [{B1.attrs['units']}]")
ax.set_xlabel(f"{B2.attrs['long_name']} [{B2.attrs['units']}]")
ax.set_ylabel(=[line, circle], frameon=False)
ax.legend(handles
return fig, ax
def hodographs_BlBm(Bl, Bm):
"""Hodograms of the magnetic field components.
Args:
Bl (xr.DataArray): Magnetic field component 1.
Bm (xr.DataArray): Magnetic field component 2.
"""
= hodographs(Bl, Bm)
fig, ax
= calculate_RD_parameter(Bl, Bm)
Bl_max, Bm0
=Bl_max, color="g", linestyle=":", label=r"$B_{l,max}$")
plt.axvline(x=-Bl_max, color="g", linestyle=":", label=r"$-B_{l,max}$")
plt.axvline(x=Bm0, color="g", linestyle=":", label=r"$B_{m,0}$")
plt.axhline(yr"$B_{m,0}$", color="g")
plt.text(Bl_max, Bm0, -Bl_max, Bm0, r"$B_{l,max}$", color="g")
plt.text(-Bl_max, Bm0, r"$-B_{l,max}$", color="g")
plt.text(
return fig, ax
def get_thx_density(probe, trange, datatype="peem"):
"""get plasma density
Note: better to get from electron mom data, peem_density, ion density is not as accurate
"""
= trange[0], trange[1]
tstart, tstop
# Get plasma density
= f"th{probe}_{datatype}_density"
tname if not data_exists_tr(tname, *trange):
=probe, trange=trange, varnames=[tname])
pyspedas.themis.mom(probe
= (
thx_density =True).sortby("time").sel(time=slice(tstart, tstop))
get_data(tname, xarray# Need to sort by time before slicing, otherwise error: KeyError: 'Value based partial slicing on non-monotonic DatetimeIndexes with non-existing keys is not allowed.'
) = thx_density.mean(dim="time")
thx_density_averaged return thx_density_averaged.values
def get_thx_max_flux_energy(probe, trange, datatype="peir"):
= trange[0], trange[1]
tstart, tstop
= f"th{probe}_{datatype}_en_eflux"
tname
if not data_exists_tr(tname, *trange):
=probe, trange=trange, varnames=[tname])
pyspedas.themis.esa(probe
= get_data(tname, xarray=True).sel(
thx_eflux =slice(tstart, tstop)
time# time_clip does not work for this variable (does not copy `spec_bins`)
) = thx_eflux.sum(dim="time").argmax(dim="v_dim")
e_index = thx_eflux.spec_bins.sel(v_dim=e_index).mean(dim="time")
thx_energy_max return thx_energy_max.values
# DEBUG
# get_data('thc_peem_density', xarray=True).hvplot()
def prcess_mva(event, plot=False, save=False, detail=True):
# Define variables
= event["tstart"], event["tstop"], event["probe"]
tstart, tstop, probe = [tstart, tstop]
trange = event.get("datatype", "fgs")
datatype
= ["thx_fgm", "thx_fgm_all"]
tplot_vars
# Convert magnetic field from GSM to MVA coordinates
= thx_mag_prod(probe, tstart, tstop, datatype, coord="mva")
mva_data
= mva_data.sel(v_dim=0)
Bl = mva_data.sel(v_dim=1)
Bm = mva_data.sel(v_dim=2)
Bn "long_name"] = "$B_l$"
Bl.attrs["units"] = "nT"
Bl.attrs["long_name"] = "$B_m$"
Bm.attrs["units"] = "nT"
Bm.attrs[
= calculate_RD_parameter(Bl, Bm, Bn)
Bl_max, Bm0, Bn0
# Initialize dictionary for results
= {}
result_dict "Bl_max"] = Bl_max
result_dict["Bm0"] = Bm0
result_dict["Bn0"] = Bn0
result_dict[
# Calculate detail if detail flag is set to True
if detail:
# Define variables related to ion velocity and flux
= f"th{probe}_peir_velocity_gsm"
thx_ion_vel_tname
if not data_exists_tr(thx_ion_vel_tname, *trange):
pyspedas.themis.esa(=probe, trange=trange, varnames=[thx_ion_vel_tname]
probe
)
# Convert ion velocity from GSM to MVA coordinates
"thx_ion_vel")
tplot_copy(thx_ion_vel_tname, "thx_ion_vel", tstart, tstop, suffix="")
time_clip("thx_fgm_mva_mat", "thx_ion_vel")
tvector_rotate(+= ["thx_ion_vel", "thx_ion_vel_rot"]
tplot_vars # Get averaged ion velocity in the normal direction
# thx_ion_vel_n = get_data("thx_ion_vel_rot", xarray=True).sel(v_dim=2).mean(dim="time").values
# print_string += f" 'thx_ion_vel_n': {thx_ion_vel_n:.2f},"
# Get averaged ion velocity in mn direction (more reliable than n direction)
= get_data("thx_ion_vel_rot", xarray=True).sel(v_dim=[1, 2])
thx_ion_vel_mn_ts = (
thx_ion_vel_mn sum(dim="v_dim"))
np.sqrt(np.square(thx_ion_vel_mn_ts).="time")
.mean(dim
.values
)"thx_ion_vel_mn"] = thx_ion_vel_mn
result_dict[
# Calculate thickness
= 0.76
c1 = mva_data.time.to_numpy().astype("datetime64[ns]")
time = time[np.abs(Bl + c1 * Bl_max).argmin(dim="time")]
t_pos = time[np.abs(Bl - c1 * Bl_max).argmin(dim="time")]
t_neg = (
L * ((t_pos - t_neg).astype("float64"))
thx_ion_vel_mn * 1e-9 # L = (thx_ion_vel_n * ((t_pos - t_neg).astype("float64"))) * 1e-9
) "L"] = L
result_dict[
# Get max ion energy flux and plasma density
"thx_ion_energy_max"] = get_thx_max_flux_energy(probe, trange)
result_dict["n_p"] = get_thx_density(probe, trange)
result_dict[
# Plotting the data
if plot:
# Calculate distance
= time[np.abs(Bl).argmin(dim="time")]
t_origin = (
distance * ((time - t_origin).astype("float64"))
thx_ion_vel_mn * 1e-9 # distance = (thx_ion_vel_n * ((time - t_origin).astype("float64"))) * 1e-9
) "distance", data={"x": time, "y": distance})
pytplot.store_data("distance", "ysubtitle", "[km]")
options(
= f"../figures/{tstart}" if save else ""
filename = "distance" if detail else ""
var_label =var_label, save_svg=filename)
tplot(tplot_vars, var_label
= hodographs_BlBm(Bl, Bm)
fig, ax f"../figures/{tstart}_mva.svg") if save else None
fig.savefig(
# logger.info(print_string)
# Convert numpy array values to native Python types
for key in result_dict:
if isinstance(result_dict[key], np.ndarray) and result_dict[key].size == 1:
= result_dict[key].item()
result_dict[key]
return result_dict
= [
raw_events
{"probe": "c",
"tstart": "2019-01-06 11:33:37",
"tstop": "2019-01-06 11:33:53",
"datatype": "fgl",
"Bl_max": 3.23,
"Bm0": 1.77,
"Bn0": 1.20,
"thx_ion_vel_n": -337.90,
"L": 4688.31,
"thx_ion_energy_max": 1345.45,
"n_p": 4.89,
"quality": "soso, waving",
},
{"probe": "c",
"tstart": "2019-01-06 11:47:00",
"tstop": "2019-01-06 11:47:15",
"datatype": "fgl",
"Bl_max": 2.78,
"Bm0": 3.63,
"Bn0": 2.29,
"thx_ion_vel_n": -283.08,
"L": 1857.74,
"thx_ion_energy_max": 1345.45,
"n_p": 4.50,
"quality": "soso",
},
{"probe": "c",
"tstart": "2019-01-06 15:54:05",
"tstop": "2019-01-06 15:54:39",
"datatype": "fgl",
"Bl_max": 2.77,
"Bm0": 1.97,
"Bn0": 6.38,
"thx_ion_vel_n": -85.12,
"L": -2000.34,
"thx_ion_energy_max": 1345.45,
"n_p": 0.64,
"quality": "soso",
},
{"probe": "c",
"tstart": "2019-01-06 16:08:55",
"tstop": "2019-01-06 16:09:13",
"datatype": "fgl",
"Bl_max": 2.08,
"Bm0": 6.26,
"Bn0": 2.18,
"thx_ion_vel_n": -187.13,
"L": -2070.15,
"thx_ion_energy_max": 1771.15,
"n_p": 0.55,
"quality": "soso",
},
{"probe": "c",
"tstart": "2019-01-06 16:37:01",
"tstop": "2019-01-06 16:38:10",
"datatype": "fgl",
"Bl_max": 3.30,
"Bm0": -4.44,
"Bn0": 4.79,
"thx_ion_vel_n": -444.92,
"L": 16045.03,
"thx_ion_energy_max": 2332.04,
"n_p": 0.48,
"quality": "soso",
},
{"probe": "c",
"tstart": "2019-01-06 16:39:06",
"tstop": "2019-01-06 16:39:45",
"datatype": "fgl",
"Bl_max": 3.00,
"Bm0": 3.83,
"Bn0": 5.55,
"thx_ion_vel_n": -353.01,
"L": -7567.59,
"thx_ion_energy_max": 1345.45,
"n_p": 0.86,
"quality": "soso",
},
{"probe": "c",
"tstart": "2019-01-06T17:40:50",
"tstop": "2019-01-06T17:41:50",
"datatype": "fgl",
"Bl_max": 3.71,
"Bm0": 1.35,
"Bn0": -0.63,
"thx_ion_vel_n": -343.57,
"L": -13871.65,
"thx_ion_energy_max": 1345.45,
"n_p": 5.85,
"quality": "soso, waving, large interval",
},
{"probe": "c",
"tstart": "2019-01-06T17:46:40",
"tstop": "2019-01-06T17:46:55",
"datatype": "fgl",
"Bl_max": 3.82,
"Bm0": 1.68,
"Bn0": 1.34,
"thx_ion_vel_n": -503.10,
"L": 1792.29,
"thx_ion_energy_max": 1771.15,
"n_p": 4.01,
"quality": "soso",
},
{"probe": "c",
"tstart": "2019-01-06T17:48:00",
"tstop": "2019-01-06T17:48:40",
"datatype": "fgl",
"Bl_max": 3.59,
"Bm0": 2.99,
"Bn0": 0.87,
"thx_ion_vel_n": -513.37,
"L": 6288.79,
"thx_ion_energy_max": 1771.15,
"n_p": 3.75,
"quality": "soso",
},
{"probe": "c",
"tstart": "2019-01-06T19:26:14",
"tstop": "2019-01-06T19:26:35",
"datatype": "fgs",
"Bl_max": 2.16,
"Bm0": -3.05,
"Bn0": 3.20,
"thx_ion_vel_n": -170.46,
"L": 1398.71,
"thx_ion_energy_max": 1345.45,
"n_p": 5.33,
"quality": "soso, low resolution",
},
{"probe": "c",
"tstart": "2019-01-06T19:55:21",
"tstop": "2019-01-06T19:55:29",
"datatype": "fgl",
"Bl_max": 3.53,
"Bm0": -1.77,
"Bn0": -0.07,
"thx_ion_vel_n": 410.07,
"L": -1460.86,
"thx_ion_energy_max": 1345.45,
"n_p": 4.90,
"quality": "good",
},
{"probe": "c",
"tstart": "2019-01-06T19:59:45",
"tstop": "2019-01-06T19:59:50",
"datatype": "fgl",
"Bl_max": 1.70,
"Bm0": 0.86,
"Bn0": -3.94,
"thx_ion_vel_n": 340.09,
"L": -233.81,
"thx_ion_energy_max": 1345.45,
"n_p": 3.96,
"quality": "bad",
},
{"probe": "c",
"tstart": "2019-01-06T20:08:15",
"tstop": "2019-01-06T20:08:25",
"datatype": "fgl",
"Bl_max": 1.81,
"Bm0": 3.71,
"Bn0": 0.07,
"thx_ion_vel_n": -332.01,
"L": -1473.31,
"thx_ion_energy_max": 1345.45,
"n_p": 4.43,
"quality": "soso",
},
{"probe": "c",
"tstart": "2019-01-06T20:14:27.40",
"tstop": "2019-01-06T20:14:33",
"datatype": "fgl",
"Bl_max": 3.08,
"Bm0": -1.41,
"Bn0": -1.12,
"L": -1053.43,
"thx_ion_vel_n": 432.18,
"thx_ion_energy_max": 1771.15,
"n_p": 4.71,
"quality": "good",
},
{"probe": "c",
"tstart": "2019-01-07T06:02:30",
"tstop": "2019-01-07T06:05:00",
"datatype": "fgs",
"Bl_max": 1.44,
"Bm0": 2.10,
"Bn0": 1.27,
"thx_ion_energy_max": 1345.45,
"quality": "bad",
},
{"probe": "c",
"tstart": "2019-01-07T06:27:00",
"tstop": "2019-01-07T06:27:40",
"datatype": "fgs",
"Bl_max": 2.05,
"Bm0": -2.49,
"Bn0": -0.35,
"thx_ion_energy_max": 1345.45,
"quality": "bad",
},
{"probe": "c",
"tstart": "2019-01-07T09:13:11",
"tstop": "2019-01-07T09:13:40",
"datatype": "fgl",
"Bl_max": 1.75,
"Bm0": -2.28,
"Bn0": -1.68,
"L": -6610.43,
"thx_ion_vel_n": 431.70,
"thx_ion_energy_max": 1345.45,
"quality": "soso",
},
{"probe": "c",
"tstart": "2019-01-07T09:20:08",
"tstop": "2019-01-07T09:20:22",
"datatype": "fgl",
"Bl_max": 1.41,
"Bm0": 2.59,
"Bn0": -0.02,
"L": 1606.09,
"thx_ion_vel_n": -133.15,
"thx_ion_energy_max": 1345.45,
"quality": "soso",
},
{"probe": "c",
"tstart": "2019-01-07T09:24:15",
"tstop": "2019-01-07T09:24:45",
"datatype": "fgl",
"Bl_max": 1.72,
"Bm0": -1.56,
"Bn0": 2.45,
"L": 1495.13,
"thx_ion_vel_n": -72.27,
"thx_ion_energy_max": 1345.45,
"quality": "soso",
},
{"probe": "c",
"tstart": "2019-01-07T09:31:57.30",
"tstop": "2019-01-07T09:32:05",
"datatype": "fgl",
"Bl_max": 1.86,
"Bm0": -2.62,
"Bn0": -0.67,
"L": -885.86,
"thx_ion_vel_n": 308.12,
"thx_ion_energy_max": 1345.45,
"quality": "good",
},
{"probe": "c",
"tstart": "2019-01-07T09:34:28",
"tstop": "2019-01-07T09:34:31",
"datatype": "fgl",
"Bl_max": 1.18,
"Bm0": 1.21,
"Bn0": 2.99,
"L": 449.99,
"thx_ion_vel_n": -378.94,
"thx_ion_energy_max": 1345.45,
"quality": "soso, large Bn",
},
{"probe": "c",
"tstart": "2019-01-07T09:38:31",
"tstop": "2019-01-07T09:38:45",
"datatype": "fgl",
"Bl_max": 1.33,
"Bm0": -1.26,
"Bn0": -2.48,
"L": 3494.37,
"thx_ion_vel_n": 411.10,
"thx_ion_energy_max": 1345.45,
"quality": "soso, large Bn",
},
{"probe": "c",
"tstart": "2019-01-07T09:40:31",
"tstop": "2019-01-07T09:41:02",
"datatype": "fgl",
"Bl_max": 2.03,
"Bm0": -2.22,
"Bn0": -0.44,
"L": 9551.26,
"thx_ion_vel_n": -428.07,
"thx_ion_energy_max": 1345.45,
"quality": "soso, sensitive to time interval",
},
{"probe": "c",
"tstart": "2019-01-07T09:41:17",
"tstop": "2019-01-07T09:41:35",
"datatype": "fgl",
"Bl_max": 2.74,
"Bm0": -1.42,
"Bn0": 0.25,
"L": -1994.58,
"thx_ion_vel_n": -301.07,
"thx_ion_energy_max": 1345.45,
"quality": "good",
},
{"probe": "c",
"tstart": "2019-01-07T09:44:45",
"tstop": "2019-01-07T09:44:57",
"datatype": "fgl",
"Bl_max": 2.16,
"Bm0": 2.32,
"Bn0": 0.15,
"L": -1300.35,
"thx_ion_vel_n": -288.97,
"thx_ion_energy_max": 1345.45,
"quality": "good",
},
{"probe": "c",
"tstart": "2019-01-07T09:45:02",
"tstop": "2019-01-07T09:45:11",
"datatype": "fgl",
"Bl_max": 2.65,
"Bm0": 1.44,
"Bn0": -0.12,
"L": 1686.95,
"thx_ion_vel_n": -391.18,
"thx_ion_energy_max": 1345.45,
"quality": "good",
},
{"probe": "c",
"tstart": "2019-01-07T10:05:06.30",
"tstop": "2019-01-07T10:05:12",
"datatype": "fgl",
"Bl_max": 1.77,
"Bm0": -2.84,
"Bn0": 0.75,
"L": -1349.08,
"thx_ion_vel_n": 423.24,
"thx_ion_energy_max": 1345.45,
"quality": "soso",
},
{"probe": "c",
"tstart": "2019-01-07T10:08:29",
"tstop": "2019-01-07T10:08:47",
"datatype": "fgl",
"Bl_max": 2.07,
"Bm0": 2.70,
"Bn0": -0.14,
"L": 6583.74,
"thx_ion_vel_n": -450.17,
"thx_ion_energy_max": 1345.45,
"quality": "good",
},
{"probe": "c",
"tstart": "2019-01-07T10:33:22",
"tstop": "2019-01-07T10:33:26",
"datatype": "fgl",
"Bl_max": 1.45,
"Bm0": 2.41,
"Bn0": 2.74,
"L": 511.43,
"thx_ion_vel_n": -263.97,
"thx_ion_energy_max": 1345.45,
"quality": "soso, large Bn",
},
{"probe": "c",
"tstart": "2019-01-07T10:50:10",
"tstop": "2019-01-07T10:50:24",
"datatype": "fgl",
"Bl_max": 2.88,
"Bm0": 1.29,
"Bn0": 0.72,
"L": -1637.17,
"thx_ion_vel_n": -327.43,
"thx_ion_energy_max": 1345.45,
"quality": "good",
},
{"probe": "c",
"tstart": "2019-01-07T10:52:12",
"tstop": "2019-01-07T10:52:18",
"datatype": "fgl",
"Bl_max": 2.65,
"Bm0": 1.96,
"Bn0": -0.33,
"L": 445.06,
"thx_ion_vel_n": -245.55,
"thx_ion_energy_max": 1345.45,
"quality": "good",
},
{"probe": "c",
"tstart": "2019-01-07T10:53:21",
"tstop": "2019-01-07T10:56:12",
"datatype": "fgl",
},
{"probe": "c",
"tstart": "2019-01-07T10:57:47",
"tstop": "2019-01-07T11:03:59",
"datatype": "fgl",
},
{"probe": "c",
"tstart": "2019-01-07T11:01:47",
"tstop": "2019-01-07T11:09:09",
"datatype": "fgl",
},
{"probe": "c",
"tstart": "2019-01-07T11:11:24",
"tstop": "2019-01-07T11:14:25",
"datatype": "fgl",
},
{"probe": "c",
"tstart": "2019-01-07T11:11:24",
"tstop": "2019-01-07T11:14:25",
"datatype": "fgl",
},
{"probe": "c",
"tstart": "2019-01-07T11:22:48",
"tstop": "2019-01-07T11:24:32",
"datatype": "fgl",
},
{"probe": "c",
"tstart": "2019-01-07T11:29:38",
"tstop": "2019-01-07T11:34:32",
"datatype": "fgl",
},
{"probe": "c",
"tstart": "2019-01-07T11:37:33",
"tstop": "2019-01-07T11:42:21",
"datatype": "fgl",
},
{"probe": "c",
"tstart": "2019-01-07T11:41:01",
"tstop": "2019-01-07T11:45:43",
"datatype": "fgl",
},
{"probe": "c",
"tstart": "2019-01-07T11:59:26",
"tstop": "2019-01-07T12:03:36",
"datatype": "fgl",
},
{"probe": "c",
"tstart": "2019-01-07T12:14:31",
"tstop": "2019-01-07T12:17:54",
"datatype": "fgl",
},
{"probe": "c",
"tstart": "2019-01-07T12:18:21",
"tstop": "2019-01-07T12:19:12",
"datatype": "fgl",
},
{"probe": "c",
"tstart": "2019-01-07T12:21:10",
"tstop": "2019-01-07T12:23:13",
"datatype": "fgl",
},
{"probe": "c",
"tstart": "2019-01-07T12:27:25",
"tstop": "2019-01-07T12:31:27",
"datatype": "fgl",
},
{"probe": "c",
"tstart": "2019-01-07T12:31:11",
"tstop": "2019-01-07T12:33:13",
"datatype": "fgl",
},
{"probe": "c",
"tstart": "2019-01-07T12:38:07",
"tstop": "2019-01-07T12:41:37",
"datatype": "fgl",
},
{"probe": "c",
"tstart": "2019-01-07T12:42:25",
"tstop": "2019-01-07T12:44:35",
"datatype": "fgl",
},
{"probe": "c",
"tstart": "2019-01-07T12:45:41",
"tstop": "2019-01-07T12:49:11",
"datatype": "fgl",
},
{"probe": "c",
"tstart": "2019-01-07T12:51:18",
"tstop": "2019-01-07T12:53:52",
"datatype": "fgl",
},
{"probe": "c",
"tstart": "2019-01-07T12:57:47",
"tstop": "2019-01-07T13:01:04",
"datatype": "fgl",
},
{"probe": "c",
"tstart": "2019-01-07T13:02:31",
"tstop": "2019-01-07T13:04:59",
"datatype": "fgl",
},
{"probe": "c",
"tstart": "2019-01-07T13:05:27",
"tstop": "2019-01-07T13:06:13",
"datatype": "fgl",
},
{"probe": "c",
"tstart": "2019-01-07T13:06:04",
"tstop": "2019-01-07T13:08:42",
"datatype": "fgl",
},
{"probe": "c",
"tstart": "2019-01-07T13:20:13",
"tstop": "2019-01-07T13:23:52",
"datatype": "fgl",
},
{"probe": "c",
"tstart": "2019-01-07T13:25:55",
"tstop": "2019-01-07T13:32:47",
"datatype": "fgl",
},
{"probe": "c",
"tstart": "2019-01-07T13:48:13",
"tstop": "2019-01-07T13:51:50",
"datatype": "fgl",
},
{"probe": "c",
"tstart": "2019-01-07T13:58:05",
"tstop": "2019-01-07T14:00:31",
"datatype": "fgl",
},
{"probe": "c",
"tstart": "2019-01-07T14:00:33",
"tstop": "2019-01-07T14:01:35",
"datatype": "fgl",
},
{"probe": "c",
"tstart": "2019-01-07T14:09:36",
"tstop": "2019-01-07T14:12:33",
"datatype": "fgl",
},
{"probe": "c",
"tstart": "2019-01-07T14:15:36",
"tstop": "2019-01-07T14:17:18",
"datatype": "fgl",
},
{"probe": "c",
"tstart": "2019-01-07T14:22:06",
"tstop": "2019-01-07T14:23:46",
"datatype": "fgl",
},
{"probe": "c",
"tstart": "2019-01-07T14:25:06",
"tstop": "2019-01-07T14:27:52",
"datatype": "fgl",
},
{"probe": "c",
"tstart": "2019-01-07T14:34:40",
"tstop": "2019-01-07T14:38:08",
"datatype": "fgl",
},
{"probe": "c",
"tstart": "2019-01-07T14:37:53",
"tstop": "2019-01-07T14:45:51",
"datatype": "fgl",
},
{"probe": "c",
"tstart": "2019-01-07T15:08:59",
"tstop": "2019-01-07T15:25:45",
"datatype": "fgl",
},
{"probe": "c",
"tstart": "2019-01-07T16:16:22",
"tstop": "2019-01-07T17:02:42",
"datatype": "fgl",
},
{"probe": "c",
"tstart": "2019-01-07T17:51:52",
"tstop": "2019-01-07T18:15:32",
"datatype": "fgl",
},
{"probe": "c",
"tstart": "2019-01-07T18:09:19",
"tstop": "2019-01-07T18:24:20",
"datatype": "fgl",
},
{"probe": "c",
"tstart": "2020-02-19 00:25:40",
"tstop": "2020-02-19 00:25:55",
"datatype": "fgl",
"Bl_max": 4.768192738110849,
"Bm0": 7.686530972594898,
"Bn0": 1.9736601167997532,
"quality": "waving",
"thx_ion_vel_mn": 318.1195455936361,
"thx_ion_energy_max": 589.7517700195312,
},
{"probe": "c",
"tstart": "2020-02-19 04:39:00",
"tstop": "2020-02-19 04:39:40",
"datatype": "fgs",
"Bl_max": 4.449951459371009,
"Bm0": 6.549976122277972,
"Bn0": -0.7438622943608969,
},
{"probe": "c",
"tstart": "2020-02-19 06:27:32",
"tstop": "2020-02-19 06:27:38",
"datatype": "fgl",
"quality": "good",
"Bl_max": 4.646400176724599,
"Bm0": -3.857887514402382,
"Bn0": 1.5164913620549683,
"L": 544.5,
"energy_max": 1022.2870483398438,
},
{"probe": "c",
"tstart": "2020-02-19 08:19:09",
"tstop": "2020-02-19 08:19:13",
"datatype": "fgl",
"Bl_max": 3.999922551838544,
"Bm0": -4.129371790979183,
"Bn0": 0.39520660997553475,
"quality": "good",
"thx_ion_vel_mn": 284.2360012191073,
"thx_ion_energy_max": 1345.8341064453125,
},
{"probe": "c",
"tstart": "2020-02-20 02:35:37",
"tstop": "2020-02-20 02:35:53",
"datatype": "fgl",
"Bl_max": 2.6859416341815625,
"Bm0": -1.9787655396978097,
"Bn0": 0.5099011624613212,
"quality": "good",
"thx_ion_vel_mn": 383.2802191661173,
"thx_ion_energy_max": 776.968505859375,
},
{"probe": "c",
"tstart": "2021-01-12 03:07:32",
"tstop": "2021-01-12 03:07:35",
"datatype": "fgl",
"quality": "soso",
"Bl_max": 2.891977682401448,
"Bm0": -4.843614311016452,
"Bn0": -1.947426599144735,
},
{"probe": "c",
"tstart": "2021-01-12 06:28:15",
"tstop": "2021-01-12 06:28:20",
"datatype": "fgl",
"quality": "soso",
"Bl_max": 2.508285900921373,
"Bm0": 4.508437164205484,
"Bn0": -0.605711593677448,
},
{"probe": "c",
"tstart": "2021-01-13 07:45:17",
"tstop": "2021-01-13 07:45:30",
"datatype": "fgl",
"quality": "bad",
"Bl_max": 2.609658135051226,
"Bm0": 4.624308552001889,
"Bn0": -1.1605201660183038,
},
{"probe": "c",
"tstart": "2021-01-14 04:01:50",
"tstop": "2021-01-14 04:03:00",
"datatype": "fgl",
"quality": "soso",
"Bl_max": 3.4453850747655315,
"Bm0": 2.561887235949561,
"Bn0": -0.22949910219023723,
},
{"probe": "c",
"tstart": "2021-03-12 15:37:07",
"tstop": "2021-03-12 15:37:30",
"datatype": "fgl",
"Bl_max": 1.7684883124009274,
"Bm0": -3.7139271039491604,
"Bn0": -0.863374872170262,
"quality": "bad",
},
{"probe": "c",
"tstart": "2021-04-03 04:57:40",
"tstop": "2021-04-03 04:57:55",
"datatype": "fgl",
"quality": "good",
"Bl_max": 2.5026316689074886,
"Bm0": -1.9860704570152035,
"Bn0": -0.06739101833563413,
},
{"probe": "c",
"tstart": "2021-04-16 19:19:05",
"tstop": "2021-04-16 19:19:15",
"datatype": "fgl",
"quality": "good",
"Bl_max": 8.973848917338131,
"Bm0": 3.7841571009302024,
"Bn0": 0.3380442557008978,
},
{"probe": "c",
"tstart": "2021-04-18 20:41:33",
"tstop": "2021-04-18 20:41:35.30",
"datatype": "fgl",
"Bl_max": 2.3629257220712265,
"Bm0": 4.895827328159069,
"Bn0": -0.7405799781966877,
"quality": "bad",
},
{"probe": "c",
"tstart": "2022-04-04 18:58:16",
"tstop": "2022-04-04 18:58:22",
"datatype": "fgl",
"Bl_max": 2.459880337188561,
"Bm0": -2.931467267219719,
"Bn0": -0.9352026864241058,
"quality": "good",
},
]
0], plot=True) prcess_mva(raw_events[
22-Jul-23 14:01:25: /Users/zijin/mambaforge/envs/cool_solar_wind/lib/python3.10/site-packages/pytplot/MPLPlotter/tplot.py:623: UserWarning: Converting non-nanosecond precision datetime values to nanosecond precision. This behavior can eventually be relaxed in xarray, as it is an artifact from pandas which is now beginning to support non-nanosecond precision values. This warning is caused by passing non-nanosecond np.datetime64 or np.timedelta64 values to the DataArray or Variable constructor; it can be silenced by converting the values to nanosecond precision ahead of time.
out_ticks.append('{:.2f}'.format(var_xr.interp(coords={'time': time}, kwargs={'fill_value': 'extrapolate', 'bounds_error': False}).values))
22-Jul-23 14:01:25: /Users/zijin/mambaforge/envs/cool_solar_wind/lib/python3.10/site-packages/pytplot/MPLPlotter/tplot.py:623: UserWarning: Converting non-nanosecond precision datetime values to nanosecond precision. This behavior can eventually be relaxed in xarray, as it is an artifact from pandas which is now beginning to support non-nanosecond precision values. This warning is caused by passing non-nanosecond np.datetime64 or np.timedelta64 values to the DataArray or Variable constructor; it can be silenced by converting the values to nanosecond precision ahead of time.
out_ticks.append('{:.2f}'.format(var_xr.interp(coords={'time': time}, kwargs={'fill_value': 'extrapolate', 'bounds_error': False}).values))
22-Jul-23 14:01:25: /Users/zijin/mambaforge/envs/cool_solar_wind/lib/python3.10/site-packages/pytplot/MPLPlotter/tplot.py:623: UserWarning: Converting non-nanosecond precision datetime values to nanosecond precision. This behavior can eventually be relaxed in xarray, as it is an artifact from pandas which is now beginning to support non-nanosecond precision values. This warning is caused by passing non-nanosecond np.datetime64 or np.timedelta64 values to the DataArray or Variable constructor; it can be silenced by converting the values to nanosecond precision ahead of time.
out_ticks.append('{:.2f}'.format(var_xr.interp(coords={'time': time}, kwargs={'fill_value': 'extrapolate', 'bounds_error': False}).values))
{'Bl_max': 3.230087591755617,
'Bm0': 1.7689997499457184,
'Bn0': 1.2022550948066542,
'thx_ion_vel_mn': 493.18811615393975,
'L': -6842.985111635914,
'thx_ion_energy_max': 1345.454345703125,
'n_p': 4.890736689998141}
def test():
= events[0]
event = event["tstart"], event["tstop"], event["probe"]
tstart, tstop, probe = [tstart, tstop]
trange f"trange: {trange}")
logger.info(
# Get plasma density
= f"th{probe}_peem_density"
thx_density_tname "thc_peem_density"
= pyspedas.themis.mom(
mom_vars =probe, trange=trange, varnames=[thx_density_tname]
probe
)= get_data(thx_density_tname, xarray=True).sel(
thx_density =slice(tstart, tstop)
time
)= thx_density.mean(dim="time")
thx_density_averaged f"thx_density_averaged: {thx_density_averaged}")
logger.info(return thx_density.hvplot()
# tplot(['thd_peim_velocity_gsm', 'thd_peim_density'])
# thd_peim_density = pytplot.get_data('thd_peim_density')
# test()
Example Event
= {
event "probe": "c",
"tstart": "2021-04-03T04:57:40",
"tstop": "2021-04-03T04:57:55",
"datatype": "fgl",
"quality": "good",
'Bl_max': 2.5026316689074886, 'Bm0': -1.9860704570152035, 'Bn0': -0.06739101833563413
}
= 1
record = True
plot
if record:
events.append(event)
if plot:
# plot_mva(event, backend="matplotlib",detail=True, save=True)
# plot_mva(event, save=True)
Statistical analysis
= [
events
{"probe": "c",
"tstart": "2019-01-06 11:27:29.30",
"tstop": "2019-01-06 11:27:45",
"datatype": "fgl",
"quality": "soso, small waving",
},
{"probe": "c",
"tstart": "2019-01-06 10:41:27",
"tstop": "2019-01-06 10:41:31",
"datatype": "fgl",
"quality": "soso",
"note": "background Bl0?",
},
{"probe": "c",
"tstart": "2019-01-06 10:39:29",
"tstop": "2019-01-06 10:39:38",
"datatype": "fgl",
"quality": "bad",
},
{"probe": "c",
"tstart": "2019-01-06 10:39:08",
"tstop": "2019-01-06 10:39:15",
"datatype": "fgl",
"quality": "good",
"note": "background Bl0?",
},
{"probe": "c",
"tstart": "2019-01-05 09:21:26",
"tstop": "2019-01-05 09:21:32",
"datatype": "fgl",
"quality": "bad",
},
{"probe": "c",
"tstart": "2019-01-05 09:14:50",
"tstop": "2019-01-05 09:14:55",
"datatype": "fgl",
"quality": "good",
},
{"probe": "c",
"tstart": "2019-01-05 09:09:12",
"tstop": "2019-01-05 09:09:25",
"datatype": "fgl",
"quality": "soso, waving",
},
{"probe": "c",
"tstart": "2019-01-05 09:05:41",
"tstop": "2019-01-05 09:05:47",
"datatype": "fgl",
"quality": "soso, large Bn0",
},
{"probe": "c",
"tstart": "2019-01-05 07:43:25",
"tstop": "2019-01-05 07:43:35",
"datatype": "fgl",
"quality": "bad, magnitude dipping",
},
{"probe": "c",
"tstart": "2019-01-05 07:11:29",
"tstop": "2019-01-05 07:11:35",
"datatype": "fgl",
"quality": "good, waving",
},
{"probe": "c",
"tstart": "2019-01-01 05:22:51",
"tstop": "2019-01-01 05:22:55",
"datatype": "fgl",
"quality": "soso",
"note": "background Bl0?",
},
{"probe": "c",
"tstart": "2019-01-01 03:49:04.30",
"tstop": "2019-01-01 03:49:11",
"datatype": "fgl",
"quality": "soso",
},
{"probe": "c",
"tstart": "2019-01-01 03:47:57",
"tstop": "2019-01-01 03:48:01",
"datatype": "fgl",
"quality": "bad",
"note": "background Bl0?",
},
{"probe": "c",
"tstart": "2019-01-01 00:34:16",
"tstop": "2019-01-01 00:34:26",
"datatype": "fgl",
"quality": "good",
},
]
for event in events:
try:
= prcess_mva(event, plot=False, save=False)
result_dict
event.update(result_dict)except Exception as e:
print(f"Error processing event {event}: {e}")
= pd.DataFrame(events) df
from astropy import units as u
from plasmapy.formulary.lengths import inertial_length
"k_m"] = np.abs(df["Bm0"] / df["Bl_max"])
df["k_n"] = np.abs(df["Bn0"] / df["Bl_max"])
df["d_i"] = (
df["n_p"].to_numpy() * u.cm**-3, particle="proton").to(u.km).value
inertial_length(df[
)"L/d_i"] = df["L"] / df["d_i"]
df[ df.describe()
--------------------------------------------------------------------------- KeyError Traceback (most recent call last) File ~/mambaforge/envs/cool_solar_wind/lib/python3.10/site-packages/pandas/core/indexes/base.py:3653, in Index.get_loc(self, key) 3652 try: -> 3653 return self._engine.get_loc(casted_key) 3654 except KeyError as err: File ~/mambaforge/envs/cool_solar_wind/lib/python3.10/site-packages/pandas/_libs/index.pyx:147, in pandas._libs.index.IndexEngine.get_loc() File ~/mambaforge/envs/cool_solar_wind/lib/python3.10/site-packages/pandas/_libs/index.pyx:176, in pandas._libs.index.IndexEngine.get_loc() File pandas/_libs/hashtable_class_helper.pxi:7080, in pandas._libs.hashtable.PyObjectHashTable.get_item() File pandas/_libs/hashtable_class_helper.pxi:7088, in pandas._libs.hashtable.PyObjectHashTable.get_item() KeyError: 'n_p' The above exception was the direct cause of the following exception: KeyError Traceback (most recent call last) /Users/zijin/projects/solar_wind_discontinuities/notebooks/main.ipynb Cell 17 in <cell line: 8>() <a href='vscode-notebook-cell:/Users/zijin/projects/solar_wind_discontinuities/notebooks/main.ipynb#X22sZmlsZQ%3D%3D?line=5'>6</a> df["k_m"] = np.abs(df["Bm0"] / df["Bl_max"]) <a href='vscode-notebook-cell:/Users/zijin/projects/solar_wind_discontinuities/notebooks/main.ipynb#X22sZmlsZQ%3D%3D?line=6'>7</a> df["k_n"] = np.abs(df["Bn0"] / df["Bl_max"]) ----> <a href='vscode-notebook-cell:/Users/zijin/projects/solar_wind_discontinuities/notebooks/main.ipynb#X22sZmlsZQ%3D%3D?line=7'>8</a> df["d_i"] = inertial_length(df["n_p"].to_numpy() * u.cm ** -3, particle='proton').to(u.km).value <a href='vscode-notebook-cell:/Users/zijin/projects/solar_wind_discontinuities/notebooks/main.ipynb#X22sZmlsZQ%3D%3D?line=8'>9</a> df["L/d_i"] = df["L"] / df["d_i"] <a href='vscode-notebook-cell:/Users/zijin/projects/solar_wind_discontinuities/notebooks/main.ipynb#X22sZmlsZQ%3D%3D?line=9'>10</a> df.describe() File ~/mambaforge/envs/cool_solar_wind/lib/python3.10/site-packages/pandas/core/frame.py:3761, in DataFrame.__getitem__(self, key) 3759 if self.columns.nlevels > 1: 3760 return self._getitem_multilevel(key) -> 3761 indexer = self.columns.get_loc(key) 3762 if is_integer(indexer): 3763 indexer = [indexer] File ~/mambaforge/envs/cool_solar_wind/lib/python3.10/site-packages/pandas/core/indexes/base.py:3655, in Index.get_loc(self, key) 3653 return self._engine.get_loc(casted_key) 3654 except KeyError as err: -> 3655 raise KeyError(key) from err 3656 except TypeError: 3657 # If we have a listlike key, _check_indexing_error will raise 3658 # InvalidIndexError. Otherwise we fall through and re-raise 3659 # the TypeError. 3660 self._check_indexing_error(key) KeyError: 'n_p'
# histogram of k_m, with values larger than 1 belonging to the same group
"k_m"].plot(kind="hist")
df[# df["k_n"].plot(kind="hist")
# histogram of k_m, with values larger than 1 belonging to the same group
# np.abs(df["k_m"]).plot(kind="hist")
= plt.subplots()
fig, axs
= 0.25
bin_space
= np.arange(0, 1 + 2 * bin_space, bin_space)
bins = np.arange(0, 1 + bin_space, bin_space).tolist()
ticks "1+")
ticks.append(
# Modify k_m so all values larger than 1 are set to 2
= [x if x <= 1 else 1 + bin_space / 2 for x in np.abs(df["k_m"])]
k_m_grouped
# Then, define bins from 0 to 1 in steps of 0.25, and an additional bin for all values >1
=bins)
axs.hist(k_m_grouped, bins
r"$\kappa_m$")
axs.set_xlabel("Count")
axs.set_ylabel(
# axs.format(
# xlabel=r"$\kappa_m$",
# ylabel="Count",
# )
# Adjust x-axis labels to reflect the actual bins in the data
plt.xticks(bins, ticks)
# fig.savefig("../figures/k_m_hist.svg")
plt.show()