split_timerange
split_timerange (timerange:list[datetime.datetime], n:int=1)
*Split a timerange into multiple timeranges.
Reference: TimeRange
in sunpy.time
*
IDsConfig
IDsConfig (name:str='events', mag_data:polars.lazyframe.frame.LazyFrame=None, mag_meta:space _analysis.core.MagVariable=MagVariable(name=None, description=None, unit=None, ts=None, timerange=None, dataset=None, parameter=None, B_cols=None), ts:datetime.timedelta=None, events:polars.dataframe.frame.DataFrame=None, detect_func:Callable=<function detect_variance>, detect_kwargs:dict=<factory>, method:Literal['fit','derivative']='fit', file_fmt:str='arrow', file_path:pathlib.Path=Path('/home/runne r/work/discontinuitypy/discontinuitypy/data'), plasma_data:polars.lazyframe.frame.LazyFrame=None, plasma_meta :space_analysis.meta.PlasmaDataset=PlasmaDataset(timerange=Non e, variables=None, name=None, dataset=None, parameters=None, ts=None, temperature_col=None, para_col=None, perp_cols=None, velocity_cols=None, speed_col=None, density_col=None), ion_temp_data:polars.lazyframe.frame.LazyFrame=None, ion_temp_ meta:space_analysis.meta.TempDataset=TempDataset(timerange=Non e, variables=None, name=None, dataset=None, parameters=None, ts=None, temperature_col=None, para_col=None, perp_cols=None), e_temp_data:polars.lazyframe.frame.LazyFrame=None, e_temp_meta :space_analysis.meta.TempDataset=TempDataset(timerange=None, variables=None, name=None, dataset=None, parameters=None, ts=None, temperature_col=None, para_col=None, perp_cols=None), timerange:list[datetime.datetime]=None, split:int=1, tmp:bool=False, **extra_data:Any)
*Extend the IDsDataset class to provide additional functionalities:
- Split data to handle large datasets (thus often requiring getting data lazily)*
SpeasyIDsConfig
SpeasyIDsConfig (name:str='events', mag_data:polars.lazyframe.frame.LazyFrame=None, mag_meta :space_analysis.core.MagVariable=MagVariable(name=None, description=None, unit=None, ts=None, timerange=None, dataset=None, parameter=None, B_cols=None), ts:datetime.timedelta=None, events:polars.dataframe.frame.DataFrame=None, detect_func:Callable=<function detect_variance>, detect_kwargs:dict=<factory>, method:Literal['fit','derivative']='fit', file_fmt:str='arrow', file_path:pathlib.Path=Path('/home /runner/work/discontinuitypy/discontinuitypy/data'), plasma_data:polars.lazyframe.frame.LazyFrame=None, plasm a_meta:space_analysis.meta.PlasmaDataset=PlasmaDataset(t imerange=None, variables=None, name=None, dataset=None, parameters=None, ts=None, temperature_col=None, para_col=None, perp_cols=None, velocity_cols=None, speed_col=None, density_col=None), ion_temp_data:polars.lazyframe.frame.LazyFrame=None, ion _temp_meta:space_analysis.meta.TempDataset=TempDataset(t imerange=None, variables=None, name=None, dataset=None, parameters=None, ts=None, temperature_col=None, para_col=None, perp_cols=None), e_temp_data:polars.lazyframe.frame.LazyFrame=None, e_tem p_meta:space_analysis.meta.TempDataset=TempDataset(timer ange=None, variables=None, name=None, dataset=None, parameters=None, ts=None, temperature_col=None, para_col=None, perp_cols=None), timerange:list[datetime.datetime]=None, split:int=1, tmp:bool=False, provider:str='cda', **extra_data:Any)
Based on speasy
Variables to get the data
get_vars
get_vars (vars:str, timerange:list[datetime.datetime]=None)