
Homework 04

2. Winding number

Suppose 𝑓(𝑧) is holomorphic in the disc |𝑧| ≤ 𝜖 and has a zero at 𝑧 = 0 but nowhere
else in the disc |𝑧| ≤ 𝜖. Show by direct integration that

1
2𝜋𝑖 ∫

|𝑧|=𝜖

𝑓 ′(𝑧)
𝑓(𝑧) 𝑑𝑧

equals the winding number of the argument of f around the circle |𝑧| = 𝜖. Then use
the residue theorem to show that this equals the degree of the zero, in agreement
with the argument principle.

The integral

∫
𝐶

𝑓 ′(𝑧)
𝑓(𝑧) 𝑑𝑧 = ∫

𝐶

1
𝑓(𝑧)𝑑𝑓(𝑧) = ∫

𝑓(𝐶)

1
𝑤𝑑𝑤

effectively measures the total change in the argument of 𝑓(𝑧) as 𝑧 traverses the circle, which
equals the winding number of the argument of 𝑓 .

Since 𝑓(𝑧) is holomorphic in the disc |𝑧| ≤ 𝜖 and has a zero at 𝑧 = 0, 𝑓(𝑧) can be locally
expressed as 𝑧𝑛𝑔(𝑧), where 𝑛 is the degree of the zero.

Then, 𝑓 ′(𝑧) = 𝑛𝑧𝑛−1𝑔(𝑧) + 𝑧𝑛𝑔′(𝑧), and so

𝑓 ′(𝑧)
𝑓(𝑧) = 𝑛

𝑧 + 𝑔′(𝑧)
𝑔(𝑧)

The residue at 𝑧 = 0 is the coefficient of 1
𝑧 in this expression, which is 𝑛, the degree of the

zero.
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4. Analytic continuation and Fourier coefficents

Give an analytic continuation of cos 𝜃 from the unit circle 𝑧 = 𝑒𝑖𝜃 to the complex
plane minus the origin.

Conclude that the Fourier coefficients 𝑐𝑛 of 𝑒− cos 𝜃 decrease faster than any expo-
nential, meaning 𝑐𝑛 = 𝑜(𝑒−𝛼𝑛) for all 𝛼 as 𝑛 → ±∞. Compare this to the Fourier
series of 1/(𝑐𝑜𝑠𝜃 − 3/2), what is the decay of its Fourier coefficents?

Analytic continuation

On the unit circle 𝑧 = 𝑒𝑖𝜃, cos 𝜃 = 1
2(𝑒𝑖𝜃 + 𝑒−𝑖𝜃) = 1

2(𝑧 + 𝑧−1). This expression provides an
analytic continuation of cos 𝜃 to the complex plane minus the origin, as it is well-defined for
all 𝑧 ≠ 0.

Fourier coefficents of 𝑒− cos  𝜃

The function 𝑒− cos  𝜃 is smooth and periodic. The Fourier coefficients 𝑐𝑛 of a periodic function
𝑓(𝜃) are given by:

𝑐𝑛 = 1/2𝜋 ∫
2𝜋

0
𝑓(𝜃)𝑒𝑖𝑛𝜃𝑑𝜃 = 1/2𝜋 ∫

2𝜋

0
𝑒− cos 𝜃+𝑖𝑛𝜃𝑑𝜃

1/2𝜋 ∫
2𝜋

0
𝑒− cos 𝜃+𝑖𝑛𝜃𝑑𝜃 = 1/2𝜋 ∫

|𝑧|=1
𝑒−𝑧/2−1/2𝑧𝑧𝑛 𝑑𝑧

𝑖𝑧 = 𝑅𝑒𝑠𝑧=0𝑒−𝑧/2−1/2𝑧𝑧𝑛−1

The coefficient 𝑎−𝑛 of 𝑔(𝑧) = 𝑒−𝑧/2−1/2𝑧 at the point of 𝑧 = 0 can de derived by expanding by
separately 𝑒−𝑧/2 as Talyor Series and 𝑒−1/(2𝑧) as a Laurent Series and then multiplying these
series together

𝑎−𝑛 =
∞
∑
𝑘=0

(−1
2)𝑘 1

𝑘!(−
1
2)(𝑛+𝑘) 1

(𝑛 + 𝑘)!

So fourier coefficients 𝑐𝑛

𝑐𝑛 = 𝑎−𝑛 ≤ |𝑎−𝑛| ≤ 1
2𝑛

1
𝑛!

decrease faster than any exponential.
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Fourier coefficents of 1
cos  𝜃−3/2

The Fourier coefficients 𝑐𝑛 of a periodic function 𝑓(𝜃) are given by:

𝑐𝑛 = 1
2𝜋 ∫

2𝜋

0
𝑓(𝜃)𝑒𝑖𝑛𝜃𝑑𝜃

= 1
2𝜋 ∫

2𝜋

0

1
cos  𝜃 − 3/2𝑒𝑖𝑛𝜃𝑑𝜃

= 1
2𝜋𝑖 ∫

|𝑧|=1

2𝑧
𝑧2 − 3𝑧 + 1𝑧𝑛−1𝑑𝑧

Let 𝑧2 − 3𝑧 + 1 = (𝑧 − 𝑧1)(𝑧 − 𝑧2), where 𝑧1 = 1
2 (3 −

√
5) , 𝑧2 = 1

2 (3 +
√

5).

𝑐𝑛 = 𝑅𝑒𝑠𝑧=𝑧1

2𝑧
(𝑧 − 𝑧1)(𝑧 − 𝑧2)

𝑧𝑛−1

= 2𝑧1
𝑧1 − 𝑧2

𝑧1
𝑛−1

5. Laurent series and singularity

Let’s consider a function 𝑓 that is holomorphic in a disc around 𝑧0 except at 𝑧0 itself.

1. Removable Singularity:

If 𝑓 has a removable singularity at 𝑧0, it means that 𝑓 can be extended to a holomorphic
function at 𝑧0. In terms of the Laurent series, this implies that all the coefficients 𝑎𝑛 for
𝑛 < 0 are zero because it reduces to its Taylor series.

Conversely, if all 𝑎𝑛 = 0 for 𝑛 < 0, the Laurent series reduces to a Taylor series, implying
that 𝑓 is holomorphic at 𝑧0 (since it can be expressed as a power series), and thus the
singularity is removable.

2. Pole of Order 𝑚 :

If 𝑓 has a pole of order 𝑚 at 𝑧0, it means that in the Laurent series, there is a term with
(𝑧 − 𝑧0)−𝑚 (where 𝑎−𝑚 ≠ 0) and no terms with higher negative powers.

Conversely, if there is some 𝑚 < 0 such that 𝑎𝑚 ≠ 0 but 𝑎𝑛 = 0 for all 𝑛 < 𝑚, then
the Laurent series has a term 𝑎𝑚(𝑧 − 𝑧0)𝑚 as its term with the highest negative power,
indicating a pole of order 𝑚 .
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3. Essential Singularity:

If the singularity at 𝑧0 is neither removable nor a pole, it must be an essential singularity.
This is characterized by the fact that there are infinitely many negative powers of 𝑧 − 𝑧0
in the Laurent series with non-zero coefficients. In other words, if the Laurent series has
non-zero 𝑎𝑛 for infinitely many 𝑛 < 0, then 𝑧0 is an essential singularity.

6. Euler proof of Basel problem

Using the result of the bonus problem, prove that

sin 𝜋𝑧 = ∏(1 − 𝑧/𝑛)𝑒𝑧/𝑛 = 𝜋𝑧 ∏(1 − 𝑧2/𝑛2)

Then compare the Taylor series of sin �z to the first couple terms in the expansion
of the infinite product to conclude

∞
∑
𝑛=1

1/𝑛2 = 𝜋2/6

According to the Weierstrass factorization theorem, an entire function can be represented as a
product over its zeros. The function sin 𝜋𝑧 is entire and has zeros at all integers. The product
representation for sin 𝜋𝑧 is given by:

sin 𝜋𝑧 = 𝜋𝑧
∞
∏
𝑛=1

(1 − 𝑧
𝑛)(1 + 𝑧

𝑛) = sin 𝜋𝑧 = 𝜋𝑧
∞
∏
𝑛=1

(1 − 𝑧2

𝑛2 )

The Taylor series expansion of sin 𝜋𝑧 around 𝑧 = 0 is:

sin 𝜋𝑧 = 𝜋𝑧 − 𝜋3𝑧3

3! + 𝜋5𝑧5

5! − 𝜋7𝑧7

7! + ⋯

Now, let’s expand the infinite product to the first couple of terms and keeping terms up to 𝑧3,
we get:

𝜋𝑧
∞
∏
𝑛=1

(1 − 𝑧2

𝑛2 ) = 𝜋𝑧 (1 − 𝑧2

12 )(1 − 𝑧2

22 )(1 − 𝑧2

32 )⋯

= 𝜋𝑧 (1 − 𝑧2 ( 1
12 + 1

22 + 1
32 + ⋯) + ⋯)

Comparing the coefficient of 𝑧3 from the Taylor series and the product expansion, we have:
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−𝜋3

6 = −𝜋 ( 1
12 + 1

22 + 1
32 + ⋯)

This is the result we want.
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Homework 4

1. Contour integrals
I n [ ] : = Integrate[z, {z, I, I + 1}]

Ou t [ ] =

1

2
+ 

I n [ ] : = Integrate1  1 - z2, {z, 0, I Infinity}
Ou t [ ] =

 π

2

I n [ ] : = s1 = {z, -1 - I, -1 + I};
s2 = {z, -1 + I, 1 + I};
s3 = {z, 1 + I, 1 - I};
s4 = {z, 1 - I, -1 - I};
results = Map[Integrate[Abs[z]^2, #] &, {s1, s2, s3, s4}]
Total@results

Ou t [ ] =


8 

3
,
8

3
, -

8 

3
, -

8

3


Ou t [ ] =

0

3. Laurent series
Use Mathematica to compute the Laurent series for

f (z) = 1 / (z(z - i) (z - 1))
in the following annuli

A1 = {z 0 < z < 1}
A2 = {z 0 < z - 1 < 1}
A3 = {z 0 < z - i < 1}
A4 = {z 1 < z }.
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I n [ ] : = f[z_] := 1 / (z (z - I) (z - 1))
n = 5;
Series[f[z], {z, 0, n}]
Series[f[z], {z, 1, n}]
Series[f[z], {z, I, n}]
Series[f[z], {z, Infinity, n}]

Ou t [ ] =

-


z
- (1 + ) - z -  z3 - (1 + ) z4 - z5 + O[z]6

Ou t [ ] =

1
2
+



2

z - 1
-

1

2
+  +

1

4
+
5 

4
(z - 1) -

5

4
 (z - 1)2 -

1

8
-
9 

8
(z - 1)3 +

1

8
-  (z - 1)4 -

1

16
-
15 

16
(z - 1)5 + O[z - 1]6

Ou t [ ] =

-

1
2
-



2

z - 
- 1 +



2
+

1

4
-
5 

4
(z - ) +

5

4
(z - )

2
+

1

8
+
9 

8
(z - )

3
- 1 -



8
(z - )

4
-

1

16
+
15 

16
(z - )

5
+ O[z - ]

6

Ou t [ ] =

1

z

3

+
1 + 

z4
+



z5
+ O

1

z

6
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