Homework 04

2. Winding number

Suppose $f(z)$ is holomorphic in the disc $|z| \leq \epsilon$ and has a zero at $z = 0$ but nowhere else in the disc $|z| \leq \epsilon$. Show by direct integration that

$$
\frac{1}{2\pi i}\int_{|z|=\epsilon}\frac{f'(z)}{f(z)}dz
$$

equals the winding number of the argument of f around the circle $|z| = \epsilon$. Then use the residue theorem to show that this equals the degree of the zero, in agreement with the argument principle.

The integral

$$
\int_C \frac{f'(z)}{f(z)} dz = \int_C \frac{1}{f(z)} df(z) = \int_{f(C)} \frac{1}{w} dw
$$

effectively measures the total change in the argument of $f(z)$ as z traverses the circle, which equals the winding number of the argument of f .

Since $f(z)$ is holomorphic in the disc $|z| \leq \epsilon$ and has a zero at $z = 0$, $f(z)$ can be locally expressed as $z^n g(z)$, where *n* is the degree of the zero.

Then, $f'(z) = nz^{n-1}g(z) + z^n g'(z)$, and so

$$
\frac{f'(z)}{f(z)} = \frac{n}{z} + \frac{g'(z)}{g(z)}
$$

The residue at $z = 0$ is the coefficient of $\frac{1}{z}$ in this expression, which is n, the degree of the zero.

4. Analytic continuation and Fourier coefficents

Give an analytic continuation of $\cos \theta$ from the unit circle $z = e^{i\theta}$ to the complex plane minus the origin.

Conclude that the Fourier coefficients c_n of $e^{-\cos \theta}$ decrease faster than any exponential, meaning $c_n = o(e^{-\alpha n})$ for all α as $n \to \pm \infty$. Compare this to the Fourier series of $1/(cos\theta - 3/2)$, what is the decay of its Fourier coefficents?

Analytic continuation

On the unit circle $z = e^{i\theta}$, $\cos \theta = \frac{1}{2}(e^{i\theta} + e^{-i\theta}) = \frac{1}{2}(z + z^{-1})$. This expression provides an analytic continuation of $\cos \theta$ to the complex plane minus the origin, as it is well-defined for all $z \neq 0$.

Fourier coefficents of $e^{-\cos \theta}$

The function $e^{-\cos \theta}$ is smooth and periodic. The Fourier coefficients c_n of a periodic function $f(\theta)$ are given by:

$$
c_n = 1/2\pi \int_0^{2\pi} f(\theta)e^{in\theta} d\theta = 1/2\pi \int_0^{2\pi} e^{-\cos\theta + in\theta} d\theta
$$

$$
1/2\pi \int_0^{2\pi} e^{-\cos\theta + in\theta} d\theta = 1/2\pi \int_{|z|=1} e^{-z/2 - 1/2z} z^n \frac{dz}{iz} = Res_{z=0} e^{-z/2 - 1/2z} z^{n-1}
$$

The coefficient a_{-n} of $g(z) = e^{-z/2-1/2z}$ at the point of $z = 0$ can de derived by expanding by separately $e^{-z/2}$ as Talyor Series and $e^{-1/(2z)}$ as a Laurent Series and then multiplying these series together

$$
a_{-n}=\sum_{k=0}^\infty (-\frac{1}{2})^k \frac{1}{k!} (-\frac{1}{2})^{(n+k)} \frac{1}{(n+k)!}
$$

So fourier coefficients c_n

$$
c_n=a_{-n}\leq |a_{-n}|\leq \frac{1}{2^n}\frac{1}{n!}
$$

decrease faster than any exponential.

Fourier coefficents of $\frac{1}{\cos\,\theta-3/2}$

The Fourier coefficients c_n of a periodic function $f(\theta)$ are given by:

$$
c_n = \frac{1}{2\pi} \int_0^{2\pi} f(\theta) e^{in\theta} d\theta
$$

=
$$
\frac{1}{2\pi} \int_0^{2\pi} \frac{1}{\cos \theta - 3/2} e^{in\theta} d\theta
$$

=
$$
\frac{1}{2\pi i} \int_{|z|=1} \frac{2z}{z^2 - 3z + 1} z^{n-1} dz
$$

Let $z^2 - 3z + 1 = (z - z_1)(z - z_2)$, where $z_1 = \frac{1}{2}$ $\frac{1}{2}(3-\sqrt{5}), z_2=\frac{1}{2}$ $\frac{1}{2}(3+\sqrt{5}).$

$$
\begin{aligned} c_n &= Res_{z=z_1} \frac{2z}{(z-z_1)(z-z_2)} z^{n-1} \\ &= \frac{2z_1}{z_1-z_2} z_1^{-n-1} \end{aligned}
$$

5. Laurent series and singularity

Let's consider a function f that is holomorphic in a disc around z_0 except at z_0 itself.

1. **Removable Singularity:**

If f has a removable singularity at z_0 , it means that f can be extended to a holomorphic function at z_0 . In terms of the Laurent series, this implies that all the coefficients a_n for $n < 0$ are zero because it reduces to its Taylor series.

Conversely, if all $a_n = 0$ for $n < 0$, the Laurent series reduces to a Taylor series, implying that f is holomorphic at z_0 (since it can be expressed as a power series), and thus the singularity is removable.

2. **Pole of Order :**

If f has a pole of order m at z_0 , it means that in the Laurent series, there is a term with $(z - z_0)^{-m}$ (where $a_{-m} \neq 0$) and no terms with higher negative powers.

Conversely, if there is some $m < 0$ such that $a_m \neq 0$ but $a_n = 0$ for all $n < m$, then the Laurent series has a term $a_m(z-z_0)^m$ as its term with the highest negative power, indicating a pole of order m .

3. **Essential Singularity:**

If the singularity at z_0 is neither removable nor a pole, it must be an essential singularity. This is characterized by the fact that there are infinitely many negative powers of $z - z_0$ in the Laurent series with non-zero coefficients. In other words, if the Laurent series has non-zero a_n for infinitely many $n < 0$, then z_0 is an essential singularity.

6. Euler proof of Basel problem

Using the result of the bonus problem, prove that

$$
\sin \pi z = \prod (1 - z/n)e^{z/n} = \pi z \prod (1 - z^2/n^2)
$$

Then compare the Taylor series of $\sin z$ to the first couple terms in the expansion of the infinite product to conclude

$$
\sum_{n=1}^{\infty} 1/n^2 = \pi^2/6
$$

According to the Weierstrass factorization theorem, an entire function can be represented as a product over its zeros. The function $\sin \pi z$ is entire and has zeros at all integers. The product representation for $\sin \pi z$ is given by:

$$
\sin \pi z = \pi z \prod_{n=1}^{\infty} \left(1 - \frac{z}{n} \right) \left(1 + \frac{z}{n} \right) = \sin \pi z = \pi z \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2} \right)
$$

The Taylor series expansion of $\sin \pi z$ around $z = 0$ is:

$$
\sin \pi z = \pi z - \frac{\pi^3 z^3}{3!} + \frac{\pi^5 z^5}{5!} - \frac{\pi^7 z^7}{7!} + \cdots
$$

Now, let's expand the infinite product to the first couple of terms and keeping terms up to z^3 , we get:

$$
\pi z \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2} \right) = \pi z \left(1 - \frac{z^2}{1^2} \right) \left(1 - \frac{z^2}{2^2} \right) \left(1 - \frac{z^2}{3^2} \right) \cdots
$$

$$
= \pi z \left(1 - z^2 \left(\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots \right) + \cdots \right)
$$

Comparing the coefficient of $z³$ from the Taylor series and the product expansion, we have:

$$
-\frac{\pi^3}{6}=-\pi\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\cdots\right)
$$

This is the result we want.

Homework 4

1. Contour integrals

```
I n [ ] : = Integrate[z, {z, I, I + 1}]
O u t [ ] =
           1
           – + i<br>2
 I n [ ] : = Integrate1  1 - z2, {z, 0, I Infinity}
O u t [ ] =
           π
           \overline{\phantom{a}}I n [ ] : = s1 = {z, -1 - I, -1 + I};
          s2 = {z, -1 + I, 1 + I};
          s3 = \{z, 1 + I, 1 - I\};
          s4 = {z, 1 - I, -1 - I};
          results = Map[Integrate[Abs[z]^2, #] &, {s1, s2, s3, s4}]
          Total@results
O u t [ ] =
          \left\{ \right.\frac{8 \text{ i}}{3}, \frac{8}{3}, -\frac{8i}{3}, -\frac{8}{3}\left\{ \right.O u t [ ] =
          \Theta
```
3. Laurent series

Use Mathematica to compute the Laurent series for

```
f(z) = 1/(z(z - i)(z - 1))in the following annuli
     A_1 = \{z \mid 0 < |z| < 1\}A_2 = \{z \mid 0 < |z - 1 | < 1\}A_3 = \{z \mid 0 < |z - i| < 1\}A_4 = \{z \mid 1 < |z| \}.
```

```
I n [ ] : = f[z_] := 1 / (z (z - I) (z - 1))
     n = 5;
     Series[f[z], {z, 0, n}]
     Series[f[z], {z, 1, n}]
     Series[f[z], {z, I, n}]
     Series[f[z], {z, Infinity, n}]
```
O u t [] =

-

-

$$
\frac{\mathbb{I}}{z} - (1 + \mathbb{I}) - z - \mathbb{I} z^3 - (1 + \mathbb{I}) z^4 - z^5 + 0 [z]^6
$$

O u t [] =

$$
\begin{aligned} &\frac{\frac{1}{2}+\frac{i}{2}}{z-1}-\left(\frac{1}{2}+\dot{\mathbb{1}}\right)+\left(\frac{1}{4}+\frac{5\dot{\mathbb{1}}}{4}\right)\,\left(z-1\right)\,-\frac{5}{4}\,\left(\,z-1\,\right)^2-\\ &\left(\frac{1}{8}-\frac{9\dot{\mathbb{1}}}{8}\right)\,\left(z-1\right)^3+\left(\frac{1}{8}-\dot{\mathbb{1}}\right)\,\left(z-1\right)^4-\left(\frac{1}{16}-\frac{15\,\dot{\mathbb{1}}}{16}\right)\,\left(z-1\right)^5+0\left[z-1\right]^6 \end{aligned}
$$

O u t [] =

$$
\begin{aligned} &\frac{\frac{1}{2}-\frac{i}{2}}{z-\frac{i}{2}}=\left(1+\frac{i}{2}\right)+\left(\frac{1}{4}-\frac{5\,\,\mathrm{i}}{4}\right)\,\,\left(z-\mathrm{i}\,\right)\,+\,\frac{5}{4}\,\,\left(z-\mathrm{i}\,\right)^{\,2}\,+\\\ &\left(\frac{1}{8}+\frac{9\,\,\mathrm{i}}{8}\right)\,\,\left(z-\mathrm{i}\,\right)^{\,3}-\left(1-\frac{\mathrm{i}}{8}\right)\,\,\left(z-\mathrm{i}\,\right)^{\,4}-\left(\frac{1}{16}+\frac{15\,\,\mathrm{i}}{16}\right)\,\,\left(z-\mathrm{i}\,\right)^{\,5}+O\left[z-\mathrm{i}\,\right]^{\,6} \end{aligned}
$$

O u t [] =

$$
\left(\frac{1}{z}\right)^3+\frac{1+\dot{\mathbb{1}}}{z^4}+\frac{\dot{\mathbb{1}}}{z^5}+O\bigg[\,\frac{1}{z}\,\bigg]^6
$$