Homework 04

2. Winding number

Suppose f(z) is holomorphic in the disc $|z| \le \epsilon$ and has a zero at z = 0 but nowhere else in the disc $|z| \le \epsilon$. Show by direct integration that

$$\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{f'(z)}{f(z)} dz$$

equals the winding number of the argument of f around the circle $|z| = \epsilon$. Then use the residue theorem to show that this equals the degree of the zero, in agreement with the argument principle.

The integral

$$\int_C \frac{f'(z)}{f(z)} dz = \int_C \frac{1}{f(z)} df(z) = \int_{f(C)} \frac{1}{w} dw$$

effectively measures the total change in the argument of f(z) as z traverses the circle, which equals the winding number of the argument of f.

Since f(z) is holomorphic in the disc $|z| \leq \epsilon$ and has a zero at z = 0, f(z) can be locally expressed as $z^n g(z)$, where n is the degree of the zero.

Then, $f^\prime(z)=nz^{n-1}g(z)+z^ng^\prime(z),$ and so

$$\frac{f'(z)}{f(z)} = \frac{n}{z} + \frac{g'(z)}{g(z)}$$

The residue at z = 0 is the coefficient of $\frac{1}{z}$ in this expression, which is n, the degree of the zero.

4. Analytic continuation and Fourier coefficents

Give an analytic continuation of $\cos \theta$ from the unit circle $z = e^{i\theta}$ to the complex plane minus the origin.

Conclude that the Fourier coefficients c_n of $e^{-\cos\theta}$ decrease faster than any exponential, meaning $c_n = o(e^{-\alpha n})$ for all α as $n \to \pm \infty$. Compare this to the Fourier series of $1/(\cos\theta - 3/2)$, what is the decay of its Fourier coefficients?

Analytic continuation

On the unit circle $z = e^{i\theta}$, $\cos \theta = \frac{1}{2}(e^{i\theta} + e^{-i\theta}) = \frac{1}{2}(z + z^{-1})$. This expression provides an analytic continuation of $\cos \theta$ to the complex plane minus the origin, as it is well-defined for all $z \neq 0$.

Fourier coefficents of $e^{-\cos \theta}$

The function $e^{-\cos \theta}$ is smooth and periodic. The Fourier coefficients c_n of a periodic function $f(\theta)$ are given by:

$$c_n = 1/2\pi \int_0^{2\pi} f(\theta) e^{in\theta} d\theta = 1/2\pi \int_0^{2\pi} e^{-\cos\theta + in\theta} d\theta$$
$$1/2\pi \int_0^{2\pi} e^{-\cos\theta + in\theta} d\theta = 1/2\pi \int_{|z|=1}^{2\pi} e^{-z/2 - 1/2z} z^n \frac{dz}{iz} = \operatorname{Res}_{z=0} e^{-z/2 - 1/2z} z^{n-1}$$

The coefficient a_{-n} of $g(z) = e^{-z/2-1/2z}$ at the point of z = 0 can de derived by expanding by separately $e^{-z/2}$ as Talyor Series and $e^{-1/(2z)}$ as a Laurent Series and then multiplying these series together

$$a_{-n} = \sum_{k=0}^{\infty} (-\frac{1}{2})^k \frac{1}{k!} (-\frac{1}{2})^{(n+k)} \frac{1}{(n+k)!}$$

So fourier coefficients c_n

$$c_n = a_{-n} \le |a_{-n}| \le \frac{1}{2^n} \frac{1}{n!}$$

decrease faster than any exponential.

Fourier coefficents of $\frac{1}{\cos \theta - 3/2}$

The Fourier coefficients c_n of a periodic function $f(\theta)$ are given by:

$$\begin{split} c_n &= \frac{1}{2\pi} \int_0^{2\pi} f(\theta) e^{in\theta} d\theta \\ &= \frac{1}{2\pi} \int_0^{2\pi} \frac{1}{\cos \theta - 3/2} e^{in\theta} d\theta \\ &= \frac{1}{2\pi i} \int_{|z|=1} \frac{2z}{z^2 - 3z + 1} z^{n-1} dz \end{split}$$

Let $z^2 - 3z + 1 = (z - z_1)(z - z_2)$, where $z_1 = \frac{1}{2} \left(3 - \sqrt{5}\right), z_2 = \frac{1}{2} \left(3 + \sqrt{5}\right)$.

$$\begin{split} c_n &= Res_{z=z_1} \frac{2z}{(z-z_1)(z-z_2)} z^{n-1} \\ &= \frac{2z_1}{z_1-z_2} z_1^{n-1} \end{split}$$

5. Laurent series and singularity

Let's consider a function f that is holomorphic in a disc around z_0 except at z_0 itself.

1. Removable Singularity:

If f has a removable singularity at z_0 , it means that f can be extended to a holomorphic function at z_0 . In terms of the Laurent series, this implies that all the coefficients a_n for n < 0 are zero because it reduces to its Taylor series.

Conversely, if all $a_n = 0$ for n < 0, the Laurent series reduces to a Taylor series, implying that f is holomorphic at z_0 (since it can be expressed as a power series), and thus the singularity is removable.

2. Pole of Order m:

If f has a pole of order m at z_0 , it means that in the Laurent series, there is a term with $(z - z_0)^{-m}$ (where $a_{-m} \neq 0$) and no terms with higher negative powers.

Conversely, if there is some m < 0 such that $a_m \neq 0$ but $a_n = 0$ for all n < m, then the Laurent series has a term $a_m(z-z_0)^m$ as its term with the highest negative power, indicating a pole of order m.

3. Essential Singularity:

If the singularity at z_0 is neither removable nor a pole, it must be an essential singularity. This is characterized by the fact that there are infinitely many negative powers of $z - z_0$ in the Laurent series with non-zero coefficients. In other words, if the Laurent series has non-zero a_n for infinitely many n < 0, then z_0 is an essential singularity.

6. Euler proof of Basel problem

Using the result of the bonus problem, prove that

$$\sin \pi z = \prod (1 - z/n) e^{z/n} = \pi z \prod (1 - z^2/n^2)$$

Then compare the Taylor series of sin z to the first couple terms in the expansion of the infinite product to conclude

$$\sum_{n=1}^{\infty} 1/n^2 = \pi^2/6$$

According to the Weierstrass factorization theorem, an entire function can be represented as a product over its zeros. The function $\sin \pi z$ is entire and has zeros at all integers. The product representation for $\sin \pi z$ is given by:

$$\sin \pi z = \pi z \prod_{n=1}^{\infty} \left(1 - \frac{z}{n}\right) \left(1 + \frac{z}{n}\right) = \sin \pi z = \pi z \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2}\right)$$

The Taylor series expansion of $\sin \pi z$ around z = 0 is:

$$\sin \pi z = \pi z - \frac{\pi^3 z^3}{3!} + \frac{\pi^5 z^5}{5!} - \frac{\pi^7 z^7}{7!} + \cdots$$

Now, let's expand the infinite product to the first couple of terms and keeping terms up to z^3 , we get:

$$\begin{aligned} \pi z \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2} \right) &= \pi z \left(1 - \frac{z^2}{1^2} \right) \left(1 - \frac{z^2}{2^2} \right) \left(1 - \frac{z^2}{3^2} \right) \cdots \\ &= \pi z \left(1 - z^2 \left(\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots \right) + \cdots \right) \end{aligned}$$

Comparing the coefficient of z^3 from the Taylor series and the product expansion, we have:

$$-\frac{\pi^3}{6} = -\pi \left(\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots\right)$$

This is the result we want.

Homework 4

1. Contour integrals

```
Integrate[z, {z, I, I + 1}]
Out[•]=
         \frac{1}{2} + i
 In[*]:= Integrate [1/(1-z^2), \{z, 0, I \text{ Infinity}\}]
Out[•]=
         iπ
          2
 ln[\cdot]:= S1 = \{z, -1 - I, -1 + I\};
         s2 = \{z, -1 + I, 1 + I\};
         s3 = \{z, 1+I, 1-I\};
         s4 = \{z, 1 - I, -1 - I\};
         results = Map[Integrate[Abs[z]^2, #] &, {s1, s2, s3, s4}]
         Total@results
Out[•]=
         \left\{\frac{8 \text{ i}}{3}, \frac{8}{3}, -\frac{8 \text{ i}}{3}, -\frac{8}{3}\right\}
Out[•]=
         0
```

3. Laurent series

Use Mathematica to compute the Laurent series for

 $f(z) = \frac{1}{(z(z - i)(z - 1))}$ in the following annuli $A_1 = \{z \mid 0 < |z| < 1\}$ $A_2 = \{z \mid 0 < |z - 1| < 1\}$ $A_3 = \{z \mid 0 < |z - i| < 1\}$ $A_4 = \{z \mid 1 < |z|\}.$

```
In[*]:= f[z_] := 1 / (z (z - I) (z - 1))
n = 5;
Series[f[z], {z, 0, n}]
Series[f[z], {z, 1, n}]
Series[f[z], {z, I, n}]
Series[f[z], {z, Infinity, n}]
```

Out[•]=

$$-\frac{\dot{\mathbb{I}}}{z} - (1 + \dot{\mathbb{I}}) - z - \dot{\mathbb{I}} z^{3} - (1 + \dot{\mathbb{I}}) z^{4} - z^{5} + 0 [z]^{6}$$

Out[•]=

$$\begin{aligned} \frac{\frac{1}{2} + \frac{1}{2}}{z - 1} &- \left(\frac{1}{2} + \frac{1}{2}\right) + \left(\frac{1}{4} + \frac{5 \frac{1}{2}}{4}\right) (z - 1) - \frac{5}{4} \frac{1}{2} (z - 1)^2 - \\ &\left(\frac{1}{8} - \frac{9 \frac{1}{2}}{8}\right) (z - 1)^3 + \left(\frac{1}{8} - \frac{1}{2}\right) (z - 1)^4 - \left(\frac{1}{16} - \frac{15 \frac{1}{2}}{16}\right) (z - 1)^5 + 0 [z - 1]^6 \end{aligned}$$

Out[•]=

_

$$\frac{\frac{1}{2} - \frac{i}{2}}{z - i} - \left(1 + \frac{i}{2}\right) + \left(\frac{1}{4} - \frac{5i}{4}\right) (z - i) + \frac{5}{4} (z - i)^{2} + \left(\frac{1}{8} + \frac{9i}{8}\right) (z - i)^{3} - \left(1 - \frac{i}{8}\right) (z - i)^{4} - \left(\frac{1}{16} + \frac{15i}{16}\right) (z - i)^{5} + 0[z - i]^{6}$$

Out[•]=

$$\left(\frac{1}{z}\right)^3+\frac{1+\dot{\mathbb{I}}}{z^4}+\frac{\dot{\mathbb{I}}}{z^5}+0\left[\frac{1}{z}\right]^6$$