Homework 04

2. Winding number

Suppose f(z) is holomorphic in the disc |z| < € and has a zero at z = 0 but nowhere
else in the disc |z| < e. Show by direct integration that

1 f'(z)

21 Jy. J(2) dz

equals the winding number of the argument of f around the circle |z| = €. Then use
the residue theorem to show that this equals the degree of the zero, in agreement
with the argument principle.

The integral
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effectively measures the total change in the argument of f(z) as z traverses the circle, which
equals the winding number of the argument of f.

Since f(z) is holomorphic in the disc |z| < € and has a zero at z = 0, f(z) can be locally
expressed as 2" g(z), where n is the degree of the zero.

Then, f/(2) = nz""1g(z) + 2"¢'(2), and so
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The residue at z = 0 is the coefficient of % in this expression, which is n, the degree of the
ZEro.



4. Analytic continuation and Fourier coefficents

Give an analytic continuation of cos @ from the unit circle z = e to the complex
plane minus the origin.

Conclude that the Fourier coefficients ¢, of e~ “*? decrease faster than any expo-
nential, meaning c,, = o(e~*") for all @ as n — +o0o. Compare this to the Fourier
series of 1/(cos — 3/2), what is the decay of its Fourier coefficents?

Analytic continuation

On the unit circle z = €%, cosf = %(ew + e = %(z + 271). This expression provides an
analytic continuation of cosf to the complex plane minus the origin, as it is well-defined for
all z # 0.

Fourier coefficents of ¢ <% ¢

The function e ¢

f(0) are given by:

is smooth and periodic. The Fourier coeflicients ¢,, of a periodic function
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The coefficient a_,, of g(z) = e~#/>71/2% at the point of z = 0 can de derived by expanding by

separately e %/2 as Talyor Series and e /(2?) as a Laurent Series and then multiplying these
series together

So fourier coeflicients c,,

decrease faster than any exponential.
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Fourier coefficents of 032

The Fourier coefficients ¢,, of a periodic function f(6) are given by:
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Let 22 —3241= (2 — 2)(z — 2,), where 2; = 3 (3—V5) ,2, = 1 (3+ V).
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5. Laurent series and singularity

Let’s consider a function f that is holomorphic in a disc around z;, except at z, itself.

1. Removable Singularity:

If f has a removable singularity at z;, it means that f can be extended to a holomorphic
function at z,. In terms of the Laurent series, this implies that all the coefficients a,, for
n < 0 are zero because it reduces to its Taylor series.

Conversely, if all a,, = 0 for n < 0, the Laurent series reduces to a Taylor series, implying
that f is holomorphic at z, (since it can be expressed as a power series), and thus the
singularity is removable.

2. Pole of Order m :

If f has a pole of order m at z,, it means that in the Laurent series, there is a term with
(z—2y)”™ (where a_,, # 0) and no terms with higher negative powers.

Conversely, if there is some m < 0 such that a,, # 0 but a, = 0 for all n < m, then
the Laurent series has a term a,,(z — z,)™ as its term with the highest negative power,
indicating a pole of order m .



3. Essential Singularity:

If the singularity at z; is neither removable nor a pole, it must be an essential singularity.
This is characterized by the fact that there are infinitely many negative powers of z — 2,
in the Laurent series with non-zero coeflicients. In other words, if the Laurent series has
non-zero a,, for infinitely many n < 0, then z, is an essential singularity.

6. Euler proof of Basel problem

Using the result of the bonus problem, prove that

sinmz = H(l —z/n)e™ =1z H(l —22/n?)

Then compare the Taylor series of sin z to the first couple terms in the expansion
of the infinite product to conclude
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According to the Weierstrass factorization theorem, an entire function can be represented as a
product over its zeros. The function sin 7z is entire and has zeros at all integers. The product
representation for sin 7z is given by:

s z z = 22
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The Taylor series expansion of sin 7z around z = 0 is:
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Now, let’s expand the infinite product to the first couple of terms and keeping terms up to 23,
we get:

Comparing the coefficient of z* from the Taylor series and the product expansion, we have:



This is the result we want.
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Homework 4

1. Contour integrals

mnl-]:= Integrate[z, {z, I, IT+1}]
Out[e ]=

mi 1= Integrate[1/ (1-2%), {z, 0, I Infinity}]
Out[e]=
15t

2

in[-]:= s1l={z, -1-TI, -1+1};
s2={z,-1+1I,1+1I};
s3={z,1+I,1-1};
s4={z,1-1I,-1-1};
results = Map[Integrate[Abs[z] A2, #] &, {sl, s2, s3, s4}]

Totaleresults
Out[+]=
81 8 81 8
{7 Yy Ty T T o ’7}
3 3 3 3
Out[e]=
0]

3. Laurent series

Use Mathematica to compute the Laurent series for
f(z) = 1/(z(z - i) (z - 1))
in the following annuli
Ai={z|0< |z]| <1}
Ay={z|0<|2z-1] <1}
A3={z|0< | z-i]| <1}
Ag={z|1< |z |}

Printed by Wolfram Mathematica Student Edition
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1= flz_1 =1/ (z (z-I) (z-1))
n=>5;
Series[f[z], {z, O, n}]
Series[f[z], {z, 1, n}]
Series[f[z], {z, I, n}]
Series[f[z], {z, Infinity, n}]

Out[e]=
i 3 4 __5 6
-— - (l+1)-z-12z2"-(1+1) zZ"-2"+0[Z]
z
Out[e]=
244 1 1 51 5
1
2 2(+1]+(+ (z-1) - —1i(z-1)%-
z-1 2 4 4 4
1 9i 3 1 4 1 151
( (z-1) +(7—1 (z-1) [
8 8 8 16 16
Out[e ]=
>3 1 51 5
- i i
_ 2 2—[1+]+[—)(z—i)+(z—1)2+
z-1 2 4 4 4
1 9i 3 i 4 1 151
(+ (z-1) —[1— (z-1) —[+
8 8 8 16 16
Out[e]=
1\3 1+1 1 1.6
- + +—+O[f]
z z* z> z
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