Homework 03

1. Conformal map

Consider the half-infinite strip

S ={z|Rez>0,2i <Imz < 5i}

Find an invertible conformal map sending S to the upper half plane

H={z|Imz > 0},

we can proceed in steps using standard conformal mappings.

1.

4.

Translate the Strip: First, we translate the strip downwards 7'(z) = z — 2i so that its
imaginary boundaries are on the real axis and at 3i.
Scale the Strip: Next, we scale the strip so that its width becomes w. Define the

scaling map D(z) = Zz.

. Apply the Exponential Function: The exponential function E(z) = e* maps hori-

zontal strips to {z|Imz > 0,|z| > 1}
Map to the Upper Half-Plane: R(z) = %(z + 1/z) will map to the upper half-plane.

So, the complete conformal map F' from S to H is the composition of these maps:

This map is invertible and conformal.

Note that the inverse map of R(z)

z=w+ Vw? —1

has a branch cut at w € (—1,1). However, for |z| > 1, we have Imw > 0, so the maps are
inevitable.



2. Saddle point

Prove that if f = u + iv is holomorphic at z = 0 and f’(z) has a zero of degree 1
at z =0, that both v and v have saddle points at z = 0.

ff=u,+iv,=0at z=0= u,(0) =0and v, (0) =0

f is holomorphic

vy = U, =0
u, =—v, =0
So the Hessian determinant is
2
Dy, = Uy, — (uxy) = T Uy VUgy T Ugy
2 2
Uy — Uzy
2
_ _ 2 2
Dv - Uz:vvyy - (Umy) - Umy - U’my

Since f’ has a zero of degree 1 = second derivative of u and v are nonzero at z = 0, which
gives D, < 0 and D,, < 0. Given first derivative is zero, u and v have saddle points at z = 0

3. Holomorphic functions agree

Show that if two holomorphic functions agree on an interval of the real line, they
agree everywhere.

Let’s say two holomorphic function f and g agree on Interval I. we show h = f —gif h=0
on I, then h is 0 everywhere.

h(z) = i MHM(C)
n=0

n!

for ¢ € I. On the real line, h(z) and all its derivatives with respect to x vanish. So ™) (c) = 0
for all n > 0. And because h is an entire function the radius of convergence should be infinite.
Therefore, for any z € C lies within the circle of convergence, we have h(z) = 0.
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4. Joukowski Transform

In[1]:=

Oout[6]=

(xDefine the Joukowski transformsx)
joukowskiTransform[z_] :=z+1/z

(xParametrize the circle in the z-planex)
r=6/5;
center =-1/5;

z[6_] :=r xExp[I *6] + center

(*Apply the Joukowski transform to the circle parametrizationx)
w[6e_] := joukowskiTransform[z[©]]

(*Plot the image of the circle under the Joukowski transformx)
pl = ParametricPlot[{Re[w[6]], Im[w[6]]1}, {6, O, 2 % Pi}, AspectRatio -» Automatic]

We know that the potential flow around a cylinder (circle in the v - plane) with circulation " and far-field
velocity U is given by the complex potential ®(v) = U(v + 1/v) + %r Log(v). For the simplest case, we

choose ®(v) =v + 1/v +iLog(v).

So for w plane, we can:

- First, solve for z given w by invertingw =z + 1/z to get z(w) = % (W + V-4 +w? )for one branch.

- Then, solve for v given z, thus mapping z to v and for v, we have the solution ®(v).
Therefore, the solution in the w plane is f(w) = ®(v(z(w))).

Reduce[z+1/z =w, {z}]

Stream Plot
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In[159]:=
(xDefine the potential function &(z) %)

U=1; (xFar away velocityx)
T =1; (xCirculation-You can adjust this as neededx)

Phi[v_] := v+1/v+ILog[v]
5 1
v[iz_] i=—zZ+—
6 6
(#2[w_]:=3 (w+\/—4+w2)*)
1 1
z[w_] = — (w+Exp[— (Log[w+ 2] +Log[w—2])”
2 2

(xCalculate the velocity field V(z)=*)
vel[w_] :=D[Phi[v[z[ww]]], ww] /. {ww - w}

(*To use StreamPlot,we need the real and imaginary parts of the velocity fieldx)
velocityField[w_] := Through[{Re, Minus@x Im} [vel[w]]]

(*Plot the streamlines in the w-planex)

p2 =
StreamPlot[velocityField[x+Iy], {x, -3, 3}, {y, -3, 3}, AspectRatio -» Automatic];

Show[pl, p2]

out[167]=
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5. Mobius transformations

Show that Mobius transformations send circles and lines to circles and lines.

Mobius transformations

az+b a e
c bl

f(z):cz—l-d_ +z—|—%

can be decomposed into four simple transformation of translation, dilation, and inversion.

f:f4°f3°f2°f1-

Since translation, dilation perserve geometrical lines and circles, we only need to show that
inversion I(z) = 1/z sends circles and lines to circles and lines.

1 T Yl

I(z) = Iz +iy) = T+ iy ::U2+y2 T2 42

So I maps (z,y) into a (u,v) with

U= ————Fanadv=—_——-x
$2+y2 1‘2—|—y2

For line of general form Ax + By = C, we have
Au— Bv = (u? +v?)C
Thus I maps a line to a circle (C' # 0) or a line (C' = 0).
For cicrcle of general form Dz + Ey + F (2? + y?) = R, we have
Du— Ev+ F = R (u? +v?)

Thus I maps a circle to a circle (R # 0) or a line (R = 0). Note here, R is not the radius of
the original circle.



6. cross-ratio under simultaneous Mobius transformations

Show that for any three points z;, 25, 23, there is precisely one Mobius transforma-
tion sending z; to 0, 25 to 1, and 25 to infinity. The image of a fourth point z,
under this map defines the “cross-ratio” of (zy, 24, 23, 24 ). Show that the cross ratio
is preserved under simultaneous Mobius transformations of these four points.

Let Mobius transformation f(z) = (az + b)/(cz + d), satisfying

f(21) =0, f(2) =1, f(z3) =00
Then the Mo6bius transformation is determined by
f(z))=0=az;+b=0

f(z)=1=azy+b—czy—d=0
f(z3) =0c0=cz3+d=0

The three linear equations can be solved in the sense of their relative ratio.

And the Mobius transformation can be written as

Zy — 23 2 — 21

f(z) =

Zg — 21 2 — 23
So the cross ratio is

Rg T R324 — 2
Rg TR Ry T Z3

Then the cross ratio of the image under the transformation of any f is

f(zg) = f(23) flz4) — f(21)
f(zg) = f(21) fz4) = f(z3)
Note that
_ar+b ay+b  (ad—bc)(r—y)
f@) = fly) = ct+d cy+d (cx+d)(cy+d)
and




So

(29 — z3)(czy +d) (24 — 21)(c23 + d)

Rg —R3%24 — 2

(29 — 21)(c2z3 + d) (24 — 23)(c2y +d)

2o — 21 %4 — 23



	1. Conformal map
	2. Saddle point
	3. Holomorphic functions agree
	5. Mobius transformations
	6. cross-ratio under simultaneous Mobius transformations

