
Homework 06

Problem 1
1. Using equation IV.2 in Siscoe (the 3 components of the Euler equation, expressed in terms of
𝛿𝑉 ) we derived the dispersion relation for double-adiabatic MHD. We derived the F,S wave
dispersion relation in the notes (Lecture 15a; same as Siscoe IV.7). The Intermediate mode was
derived earlier in the class as well, separately (Siscoe IV4). We did not solve the quadratic using
the determinant.

a. Express the 3 wave solutions in terms of 𝜔2 (there is no need to simplify the R.H.S).

Wave solutions
The velocity perturbation is given by the following expression:

𝜔2𝛿 ⃗𝑉 = [𝐶2⊥𝑘𝑥(�⃗� ⋅ 𝛿 ⃗𝑉 ) − 𝐶211𝑘2𝑥𝛿𝑉𝑥]𝑥

+[𝐶2±𝑘𝑥𝑘𝑧𝛿𝑉𝑥 + 3𝐶211𝑘2𝑧𝛿𝑉𝑧]𝑧

+𝜉0𝐶2𝐴[𝑘2𝛿𝑉𝑥𝑥 + 𝑘2𝑧𝛿𝑉𝑦𝑦]

The three wave solutions are given by the following expressions:

Intermediate mode:

𝜔2𝑖 = 𝜉0𝐶2𝐴𝑘2𝑧

eqI := \[Omega]^2 - \[Xi]0 Ca^2 kz^2 == 0

Fast and slow waves:

(𝜔2𝑓,𝑠 − 3𝐶2∥ 𝑘2𝑧)[𝜔2𝑓,𝑠 − (2𝐶2⟂ +𝐶
2
∥ )𝑘2𝑥 − 𝜉0𝐶2𝐴𝑘2𝑧] − 𝐶4⟂𝑘2𝑥𝑘2𝑧 = 0

eqFS := (\[Omega]^2 -
      3 Cparp^2 kz^2) (\[Omega]^2 - (2 Cperp^2 +
         Cparp^2) kx^2 - \[Xi]0  Ca^2 kz^2) - Cperp^4 kx^2 kz^2 == 0

Which gives:

𝜔4 + 𝜔2(−𝜉0𝐶2𝐴𝑘2𝑧 − 𝑘2𝑥(𝐶2∥ + 2𝐶2⊥) − 3𝐶
2
∥ 𝑘2𝑧) + 3𝜉0𝐶2𝐴𝐶

2
∥ 𝑘4𝑧 + 3𝐶

2
∥ 𝑘2𝑥𝑘2𝑧(𝐶

2
∥ + 2𝐶2⊥) − 𝐶4⊥𝑘2𝑥𝑘2𝑧 = 0

in the form of a quadratic equation:

(𝜔2)2 +𝐴𝜔2 +𝐵 = 0
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where:

𝐴 = −𝜉0𝐶2𝐴𝑘2𝑧 − 𝑘2𝑥(𝐶2∥ + 2𝐶2⊥) − 3𝐶
2
∥ 𝑘2𝑧

𝐵 = 3𝜉0𝐶2𝐴𝐶2∥ 𝑘4𝑧 + 3𝐶
2
∥ 𝑘2𝑥𝑘2𝑧(𝐶

2
∥ + 2𝐶2⊥) − 𝐶4⊥𝑘2𝑥𝑘2𝑧

So the solutions in terms of 𝜔2 are:

𝜔2 =
−𝐴±

√
𝐴2 − 4𝐵
2

Friedriechs diagram

b. Plot them in a polar diagram (Friedriechs diagram) and check that they agree with the
polar diagrams shown in Notes 14a (last page). Use p|| = p⊥, for the unperturbed doublea-
diabatic plasma, and β=0.5, 0.8, 1.0, and 2.0, as shown in the class notes.

Substitute the above values of 𝐴 and 𝐵 with 𝑘𝑥 = 𝑘 cos(𝜃) and 𝑘𝑧 = 𝑘 sin(𝜃):

rules = {kz -> k Cos[\[Theta]], kx -> k Sin[\[Theta]], Ca -> 1,
   k -> 1};
cases = {Cperp -> Cparp, \[Xi]0 -> 1};
rules = Join[rules, cases];

Collect[eqFS //. rules /. notationRules, \[Omega]]

In this case, the dispersion relation could be simplified to:

𝜔4 + 𝜔2(−3𝐶2parp sin2(𝜃) − 3𝐶2parp cos2(𝜃) − cos2(𝜃)) + 3𝐶2parp cos4(𝜃) + 8𝐶4parp sin2(𝜃) cos2(𝜃) = 0

solsI = Solve[eqI, \[Omega]];
solsAll = Solve[eqFS, \[Omega]];
solsFS = {solsAll[[2]], solsAll[[4]]};
sols = Join[solsI, solsFS];
vp = Simplify[\[Omega]/k /. sols //. rules, k > 0];
ps = Table[
 Block[{Cparp = Cparpi},
  PolarPlot[Evaluate@vp, {\[Theta], 0, 2 \[Pi]}]
  ],
 {Cparpi, {Sqrt[0.5/2], Sqrt[0.8/2], Sqrt[1/2], Sqrt[2/2]}}
 ]

SetDirectory@NotebookDirectory[];
Export["figures/polar_diagram.svg", GraphicsRow[ps]]
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Figure 1:  Polar diagram

Comparison with isotropic MHD

c. Why do you think the dispersion curves for the anisotropic MHD compressional modes
are so different from the isotropic MHD ones, even when p|| = p⊥?

Basically this is because the scalar adiabatic relation is replaced by two separate adiabatic rela-
tions for aniostropic MHD. This two separate adiabatic relations have different coefficients for
the parallel and perpendicular directions. And this leads to different dispersion relations for the
compressional modes even when 𝑝∥ = 𝑝⊥.
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Problem 2

The current of a moving Alfvén wave pulse closes in the pulse itself. You can see why in
Siscoe equation III.44 (class notes Lecture 10a, Page 10) expressing 𝛿𝐽  for an MHD wave: the
Alfvén (I) mode has a parallel and a perpendicular current, 𝑑𝑖𝑣(𝐽𝐼) = −𝑖𝑘𝐽𝐼 = 0. Use the
MHD simulation to determine and plot Jy (the perpendicular current) either from (curlB)y or
from dEy/dx (in simulation coordinates). Then also plot 𝑑𝑖𝑣(𝐽𝐼) = 𝜕𝐽𝑥/𝜕𝑥 + 𝜕𝐽𝑦/𝜕𝑦 and
show it is exactly zero. [In the ideal MHD and Hall MHD equations we ignore the displace-
ment current and the space charge, so div(JI). [FYI: These corrections can become important
when the electron inertial response or ion thermal motion become significant, causing an E||
in Ohm’s law, where (-VxB)||=(JxB)||=0

The current density in the x and y directions are plotted below:

Figure 2:  Current density in x and y directions

The divergence of the current density is plotted below:

Figure 3:  divJ
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We can see that the divergence of the current density is exactly zero, which means that the current
of a moving Alfvén wave pulse closes in the pulse itself.

Problem 3

Chen Shi modified his MHD code to accept a moving source of the dBz pulse (source moves
in +y). The code is called “moving_source_code.zip” in the lecture notes. Run it and compute
the parallel current Jx around this wing at time t=4.0. You will find the current moves towards
the source in the upper-right part of the wing and away from the source in the upper-left.
This is an apparent current (appearing to connect to the source): each Jx pulse is moving
along the field, but contiguous pulses make it appear that the current continues all the way
to the source.

Figure 4:  Jx
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Figure 5:  Jy

We can see that current moves towards the source in the upper-right part of the wing with pos-
itive 𝐽𝑦 and away from the source in the upper-left with negative 𝐽𝑦. The current in y direction
has the most intensity in the edge of the wing, which let the current close itself.
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