
Homework 05

Alfven current

Compute the parallel current from a bipolar Alfvén wavepacket. In the simulation lecture
it was shown that a unipolar pulse (magnetic bomb, Bz unipolar gaussian) creates a field
aligned current. The direction of that current was computed from curlB (left panel in the 2D
result) and (in simulation coordinates) from 𝐽𝑥 = [±1/(𝜇0𝐶𝑎)]𝑑𝐸𝑦/𝑑𝑦 (right panel in the
2D result).

Unipolar Alfvén wavepacket
Multiply the RHS image by the sign corresponding to the propagation direction, we get the LHS
image.

Bipolar Alfvén wavepacket
To create a bipolar pulse in dBz and let it evolve on both sides. The init input is as follows:

case(6)
    !2D gaussian perturbation in Bz modulated by a odd function of x
    do iz = izmin,izmax
        do iy = iymin,iymax
            do ix = ixmin,ixmax
                uu(ix,iy,iz,7) = uu(ix,iy,iz,7) + db0 * (xgrid(ix) - 0.5*Lx) *
&
                exp( -( (xgrid(ix)-0.5*Lx)/(0.01*Lx) )**2 - ((ygrid(iy)-0.5*Ly)/
(0.01*Ly))**2)
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            enddo
        enddo
    enddo

The basic idea is to change the amplitude modulation part from a constant to a odd function like
(xgrid(ix) - 0.5*Lx) (sin would also work).

The figures below show the current density in the x direction for the bipolar Alfvén wavepacket.

The notebooks to reproduce the results are available here with initial input here.

Hydrodynamic shock

Show that the entropy across a hydrodynamic shock increases: (i) First, prove equation III.80
in Siscoe (you can use the jumps in p and 𝜌 previously derived). (ii) Next, take the derivative
of the entropy ratio as function of Mach number and show it is positive. Thus explain that
starting from M1=1 and moving upwards all M1 values have positive entropy ratios. (iii)
Plot the entropy ratio as function of M1 for a range of adiabatic indices. (iv) Under what
conditions does the entropy not increase? [Ans. 𝛾 = 1] When might such conditions occur
in space plasmas and why? [Ans. parallel shocks]

Given the jump conditions of pressure and density:
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𝑀2
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And as the entropy is defined as 𝛼𝑖 := 𝑝𝑖/𝜌
𝛾
𝑖
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https://github.com/Beforerr/MHD2DSpectral/blob/b775998b11b9a6f9a2609bf72fbec9fdfbbcacbe/examples/main.ipynb
https://github.com/Beforerr/MHD2DSpectral/blob/b775998b11b9a6f9a2609bf72fbec9fdfbbcacbe/examples/bipolar_pulse/mhd.input


assums = { Subscript[ρ, 1] > 0, γ > 0, Subscript[M, 1] > 0};
ratio = Simplify[α[2]/α[1] /. rules, assums]

gives us

𝛼[2]/𝛼[1] = (𝛾 + 1)−𝛾−1(𝛾 +
2
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𝛾
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1 + 1) = (
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2
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)
𝛾

Taking the derivative of the entropy ratio with respect to 𝑀1:

dRatio = D[ratio, M1];
dRatio = Simplify[dRatio, assums];
dRatio /. formatRules

gives us

𝑑
𝑑𝑀1

(
𝛼2
𝛼1
) = 4(𝛾 − 1)𝛾(𝛾 + 1)−𝛾−1(𝑀2

1 − 1)
2𝑀−2𝛾−1

1 ((𝛾 − 1)𝑀2
1 + 2)

𝛾−1

The derivative is positive for all 𝑀1 > 0 values as long as 𝛾 > 1. And when 𝑀1 = 1, the ratio is
equal to 1.

The plot of the entropy ratio as a function of 𝑀1 for a range of adiabatic indices is shown below.

γs = {1, 4/3, 5/3, 2};
LogLogPlot[
 Evaluate[ratio /. γ -> γs], {M1, 1, 100},
 PlotLegends -> γs
 ]
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And we can see that when 𝛾 = 1, the entropy ratio is constant and equal to 1. As 𝑝 = 𝛼1𝜌𝛾 =
𝑛𝑘𝑇 , this corresponds to the case where the temperature is constant across the shock. Isothermal
behavior is due to fast, field-aligned escaping electrons and this is more likely to occur in parallel
shocks.

The mathematica notebook for this question and the following question is available here.

Perpendicular Shock

a. Show Eq. III.90 following Siscoe notes. Follow same procedure as in III.73 to factor the
known solution and derive the quadratic coefficients. Write (X-1)(X^2 + A_1 X + A_0)=0
where X = (U2/U1) and solve for A0 and A1 given the coefficients of the cubic. For extra
testing of cubic, make sure that X=1 is indeed a valid solution. As another test of your
cubic equation (you can do that always during the derivation): Set 𝐴1 →∞ and validate
it becomes a quadratic that is identical to III.71 (with M1 defined same as S1).

The continuity relations for the perpendicular shock can be written as

[[𝜌𝑈]] = 0

[[𝜌𝑈2 + 𝑝 +
𝐵2

2𝜇0
]] = 0

[[(
1
2
𝜌𝑈2 +

𝛾
𝛾 − 1

𝜌 +
𝐵2

𝜇0
)𝑈]] = 0

[[𝑈𝐵]] = 0
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Normalizing the magnetic pressure by the ram pressure and the thermal pressure by the ram
pressure

𝐵21 →
𝜌1𝑈21
𝐴2

𝑝1 →
𝜌1𝑈21
𝛾𝑆2

And Elimitating 𝐵2, 𝜌2 and 𝑝2 from the equations

massEq := \[Rho]1 U1 == \[Rho]2 U2
momEq := \[Rho]1 U1^2 + p1 + B1^2/2 == \[Rho]2 U2^2 + p2 + B2^2/2
energyEq := (1/2 \[Rho]1 U1^2 + f p1 + B1^2) U1 == (1/2 \[Rho]2 U2^2 +
      f p2 + B2^2) U2
FaradayEq := B1 U1 == B2 U2
eqs = {massEq, momEq, energyEq, FaradayEq};

Simplify[
 Eliminate[eqs, {B2, \[Rho]2, p2}] /. rules, {Subscript[U, 1] > 0,
  Subscript[\[Rho], 1] > 0}]

We get the following equation

(𝑟 − 1)(𝐴2𝑟(𝑆2(−𝛾 + 𝛾𝑟 + 𝑟 + 1) − 2) + 𝑆2(𝛾 + 𝛾(−𝑟) − 2))
𝐴(𝛾 − 1)𝑆

= 0

where 𝑟 = 𝑈2/𝑈1.

Clearly, 𝑟 = 1 is a solution. We can collect the rest equation to get the quadratic equation in 𝑟

Collect[S^2 (-2 + \[Gamma] - r \[Gamma]) + A^2 r (-2 + S^2 (1 + r - \[Gamma] +
r \[Gamma])) == 0, r]

we get

𝑟2(𝐴2𝛾𝑆2 +𝐴2𝑆2) + 𝑟(−𝐴2𝛾𝑆2 +𝐴2𝑆2 − 2𝐴2 − 𝛾𝑆2) + 𝛾𝑆2 − 2𝑆2 = 0

This is exactly the same as Eq. III.90 in Siscoe notes.

b. Solve the quadratic to find the two solutions for U2. Show that one is non-physical, and
identify the remaining, physical one.

assums = {A > 0 , S > 0, \[Gamma] > 1};
Solve[eqR, {r}, Reals, Assumptions -> assums] // Simplify

Solve the quadratic equation, we get
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⎩{
⎨
{⎧

⎩{
⎨
{⎧
𝑟 →

𝐴2((𝛾 − 1)𝑆2 + 2) −√𝐴4((𝛾 − 1)𝑆2 + 2)2 +𝐴2((−2𝛾2 + 2𝛾 + 8)𝑆4 + 4𝛾𝑆2) + 𝛾2𝑆4 + 𝛾𝑆2

2𝐴2(𝛾 + 1)𝑆2
⎭}
⎬
}⎫
,

⎩{
⎨
{⎧
𝑟 →

𝐴2((𝛾 − 1)𝑆2 + 2) +√𝐴4((𝛾 − 1)𝑆2 + 2)2 +𝐴2((−2𝛾2 + 2𝛾 + 8)𝑆4 + 4𝛾𝑆2) + 𝛾2𝑆4 + 𝛾𝑆2

2𝐴2(𝛾 + 1)𝑆2
⎭}
⎬
}⎫

⎭}
⎬
}⎫

The first solution is non-physical as it is negative. The physical solution is

𝑟1 :=
𝐴2((𝛾 − 1)𝑆2 + 2) +√𝐴4((𝛾 − 1)𝑆2 + 2)2 +𝐴2((−2𝛾2 + 2𝛾 + 8)𝑆4 + 4𝛾𝑆2) + 𝛾2𝑆4 + 𝛾𝑆2

2𝐴2(𝛾 + 1)𝑆2

In the limit of 𝐴 →∞

Subscript[r, 1] :=
 1/(2 A^2 S^2 (1 + \[Gamma])) (A^2 (2 + S^2 (-1 + \[Gamma])) +
    S^2 \[Gamma] + \[Sqrt](A^4 (2 + S^2 (-1 + \[Gamma]))^2 +
       S^4 \[Gamma]^2 +
       A^2 (4 S^2 \[Gamma] + S^4 (8 + 2 \[Gamma] - 2 \[Gamma]^2))))
Simplify[Limit[Subscript[r, 1], {A -> \[Infinity]}], assums]

we can see that the solution becomes

(𝛾 − 1)𝑆2 + 2
(𝛾 + 1)𝑆2

which is the same as Eq. III.71 in Siscoe notes for hydrodynamic shocks.

c. Plot the solution as function of A1 and M1 (color, contour or surface plot OK). Show that
the limits for 𝐴1 →∞ and 𝑀1 →∞ are as expected.

In the limit of 𝐴1 →∞ and 𝑀1 →∞, the solution approaches 𝛾−1𝛾+1 . For 𝛾 = 5/3, the solution
approaches 0.25, which is expected. The contour plot of the solution is shown below.

Block[{\[Gamma] = 5/3, p1, p2},
 p1 = ContourPlot[r1, {A, 0, 100}, {S, 0, 100},
   PlotLegends -> Automatic];
 p2 = ContourPlot[r1, {A, 0, 10}, {S, 0, 10},
   PlotLegends -> Automatic];
 Export["figures/shock_U2.svg", p1];
 Export["figures/shock_U2_zoom.svg", p2];
 {p1, p2}
 ]
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Figure 1:  Contour plot with A and S less than
100 Figure 2:  Zoom in plot for A and S less than 10
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