using Speasy: get_data
using SPEDAS
# da = get_data("amda/imf", "2016-6-2", "2016-6-5")
da = get_data("cda/OMNI_HRO_1MIN/Pressure", "2016-6-2", "2016-6-5")
Speasy.SpeasyVariable{Float32, 2}: Pressure
Time Range: 2016-06-02T00:00:00 to 2016-06-04T23:59:00
Units: nPa
Shape: (4320, 1)
Size: 51.451 KiB
Columns: ['Flow pressure']
Metadata:
BIN_LOCATION: 0.0
CATDESC: Flow pressure (nPa)
DEPEND_0: Epoch
DISPLAY_TYPE: time_series
FIELDNAM: Flow pressure
FILLVAL: Any[99.98999786376953]
FORMAT: F5.2
LABLAXIS: Flow pressure
SCALEMAX: Any[100.0]
SCALEMIN: Any[0.0]
UNITS: nPa
VALIDMAX: Any[100.0]
VALIDMIN: Any[0.0]
VAR_NOTES: Derived parameters are obtained from the following equations. Flow pressure = (2*10**-6)*Np*Vp**2 nPa (Np in cm**-3, Vp in km/s, subscript p for proton)
VAR_TYPE: data
tplot([da])

using HAPIClient: get_data
da = get_data("CDAWeb/AC_H0_MFI/Magnitude,BGSEc", "2001-1-2", "2001-1-2T12")
2-element Vector{HAPIClient.HAPIVariable{T, 1, A, Vector{Dates.DateTime}} where {T, A<:AbstractVector{T}}}:
HAPIClient.HAPIVariable{Float64, 1, Vector{Float64}, Vector{Dates.DateTime}}(Magnitude, Time Range: 2001-01-02T00:00:15 to 2001-01-02T11:59:58, Units: nT, Size: (2700,))
HAPIClient.HAPIVariable{Vector{Float64}, 1, Vector{Vector{Float64}}, Vector{Dates.DateTime}}(BGSEc, Time Range: 2001-01-02T00:00:15 to 2001-01-02T11:59:58, Units: nT, Size: (2700,))
using SPEDAS
tplot(da)
